مکانیسم‌های افزایش تولید پروتئین‌های نوترکیب در کلروپلاست گیاهان

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشیار گروه اصلاح نباتات و بیوتکنولوژی کشاورزی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران

2 دانشجوی دکتری بیوتکنولوژی کشاورزی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد

3 دانشجویان دکتری اصلاح نباتات، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران

4 دانشجوی دکتری نانوبیوتکنولوژی، دانشکده علوم زیستی، دانشگاه تربیت مدرس، تهران

چکیده

چکیده
    تولید پروتئین‌های ارزشمند داروئی و مهم کاربردی در حجم انبوه و ارزان از طریق گیاهان، زراعت مولکولی نام دارد. زراعت مولکولی و تولید پروتئین‌های نوترکیب در گیاهان تراریخت کلروپلاستی در ایران با موفقیت‌های ارزشمندی همراه بوده است که تولید پروتئین‌های داروئی انسولین، اینترفرون گاما، فعال کننده‌ی پلاسمینوژن بافتی و ... نمونه‌هایی از این موفقیت‌ها می‌باشند. به‌دلیل نیاز روز افزون به پروتئین‌های نوترکیب، انتخاب یک سیستم بیانی مناسب برای تولید آن‌ها حائز اهمیت است. مهندسی ژنوم کلروپلاست به دلیل داشتن مزایای بسیار، یکی از روش‌های مناسب برای تولید پروتئین‌های نوترکیب می‌باشد. به منظور دستیابی به سطوح بالای پروتئین‌های نوترکیب در اندامک کلروپلاست بایستی با توجه به سیستم رونویسی، ترجمه و تغییرات پس از ترجمه در این اندامک به نحوی کارآمد از پتانسیل‌های بیانی آن بهره گرفت. از جمله راه‌کارهای افزایش میزان پروتئین خارجی در کلروپلاست می‌توان به درج ژن در محل مناسب در ژنوم کلروپلاست، استفاده از راه‌انداز قوی، استفاده از توالی‌های تنظیمی مناسب در انتهای ׳5 و ׳3 ژن‌های ورودی، بهینه‌‌سازی کدونی و استفاده از عوامل افزایش‌دهنده پایداری پروتئین نظیر چاپرون‌ها و پروتئین‌های فیوژن اشاره کرد. بر اساس یافته‎های اخیر در زمینه تولید پروتئین‌های نوترکیب و زراعت مولکولی، در این مقاله تلاش گردیده تا ضمن معرفی مختصر کلروپلاست و ژنوم آن، مکانیسم‌های افزایش میزان پروتئین‌های نوترکیب در گیاهان تراریخت کلروپلاستی مورد بحث و بررسی قرار گیرد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Mechanisms to Increase the Production of Recombinant Proteins in Plant Chloroplasts

نویسندگان [English]

  • Mokhtar Jalali Javaran 1
  • Mozhgan Soleimanizadeh 2
  • Babak Latif 3
  • Shahla Razmi 3
  • Melina Yarbakht 4
1 Associate Professor, Department of Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran
2 Ph.D. Student of Biotechnology, Department of Biotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad
3 Ph.D. Student of Plant Breeding, Department of Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran
4 Ph.D. Student of Nano-Biotechnology, Department of Nano-Biotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran
چکیده [English]

Abstract
Molecular farming is the use of plants to produce valuable pharmaceutical proteins in the bulky and cost-effective manner. Molecular farming and the production of recombinant proteins (such as insulin, interferon-gamma, tissue plasminogen activator, etc.) in transplastomic plants, has achieved a great success in Iran. Due to the growing demand for recombinant proteins, the selection of a proper expression system is very important. Chloroplast genome engineering, for its many advantages, is one of the suitable methods for the production of recombinant proteins. To achieve high levels of recombinant proteins in chloroplasts, plastid’s specific transcription, translation and post-translational modifications should be considered. Some of the strategies used for increasing of foreign proteins in chloroplast can be mentioned: gene insertion in the suitable site in chloroplast genome, use of strong promoters, appropriate regulatory sequences in the 5' and 3' UTRs, codon optimization, and utilization of factors enhancing protein stability such as chaperons and fusion proteins. In this article, besides a brief description about chloroplast and its genome, methods for enhancing recombinant protein production in transplastomic plants were discussed.
 

کلیدواژه‌ها [English]

  • Protein stability
  • Molecular farming
  • Enhancement of recombinant protein production
  • Chloroplast genome engineering
Abdoli-Nasab, M., Jalali-Javaran, M., Cusidó, R. M., Palazón, J., Baghizadeh, A. and Alizadeh, H. 2013. Expression of the truncated tissue plasminogen activator (K2S) gene in tobacco chloroplast. Molecular biology reports, 40: 5749-5758.
Adam, Z. 2007. Protein stability and degradation in plastids. Cell and molecular biology of plastids, springer, 19: 315-338.
Agrawal, G. K., Kato, H., Asayama, M. and Shirai, M. 2001. An AU-box motif upstream of the SD sequence of light-dependent psbA transcripts confers mRNA instability in darkness in cyanobacteria. Nucleic Acids Research, 29: 1835-1843.
Allison, L. A. 2000. The role of sigma factors in plastid transcription. Biochimie, 82: 537-548.
Bendich, A. J. 1987. Why do chloroplasts and mitochondria contain so many copies of their genome? Bioessays, 6: 279-282.
Bock, R. 2001. Transgenic plastids in basic research and plant biotechnology. Journal of Molecular Biology, 312: 425-438.
Bock, R. 2007a. Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Current Opinion in Biotechnology, 18: 100-106.
Bock, R. 2007b. Structure, function, and inheritance of plastid genomes. Cell and molecular biology of Plastids: 29-63.
Boyer, S. K. and Mullet, J. E. 1986. Characterization of P. sativum chloroplast psbA transcripts produced In Vivo, In Vitro and in E. coli. Plant molecular biology, 6: 229-243.
Buhot, L., Horvath, E., Medgyesy, P. Lerbs-Mache, S. 2006. Hybrid transcription system for controlled plastid transgene expression.Plant Journal, 46: 700-707.
Carrer, H., and Maliga, P. 1995. Targeted insertion of foreign genes into the tobacco plastid genome without physical linkage to the selectable marker gene. Biotechnology, 13: 791-94.
Chumley, T. W., Palmer, J. D., Mower, J. P., Fourcade, H. M., Calie, P. J., Boore, J. L. and Jansen, R. K. 2006. The complete chloroplast genome sequence of Pelargonium x hortorum: Organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Molecular Biology and Evolution, 23:2175-2190.
Cui, C., Song, F., Tan, Y., Zhou, X., Zhao, W., Ma, F., Liu, Y., Hussain, J., Wang, Y., Yang, G. and He, G. 2011. Stable chloroplast transformation of immature scutella and inflorescences in wheat (Triticum aestivum L.). Acta. Biochim. Biophys, Sin.doi:10.1093/abbs/gmr008.
Daniell, H. 2002. Molecular strategies for gene containment in transgenic crops. Nature Biotechnology, 20: 581-586.
Daniell, H., Singh, N. D., Mason, H. and Streatfield, S. J. 2009. Plant-made vaccine antigens and biopharmaceuticals. cTrends Plant Science, 14: 669-679.
Daniell, H., Chebolu, S., Kumar, S., Singleton, M. and Falconer, R. 2005. Chloroplast-derived vaccine antigens and other therapeutic proteins. Vaccine, 23: 1779-1783.
Daniell, H., Lee, S. B., Panchal, T. and Wiebe, P. O. 2001. Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts1. Journal of Molecular Biology, 311: 1001-1009.
Day, A. and Goldschmidt-Clermont, M. 2011. The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biotechnology Journal, 9: 540-553.
De Marchis, F., Wang, Y., Stevanato, P. Arcioni, S. and Bellucci, M. 2009. Genetic transformation of the sugar beet plastome.Transgenic Research, 18: 17-30
De Cosa, B., Moar, W., Lee, S. B., Miller, M. and Daniell, H. 2001. Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nature Biotechnology, 19: 71-74.
Dufourmantel, N., Dubald, M., Matringe, M., Canard, H., Garcon, F., Job, C., Kay, E., Wisniewski, J. P., Ferullo, J. M., Pelissier, B., Sailland, A. and Tissot, G. 2007. Generation and characterization of soybean and marker-free tobacco plastid transformants over-expressing a bacterial 4-hydroxyphenylpyruvate dioxygenase which provides strong herbicide tolerance. Plant Biotechnol Journal, 5: 118-133.
Dufourmantel, N., Pelissier, B., Garcon, F., Peltier, G., Ferullo, J. M. and Tissot, G. 2004. Generation of fertile transplastomic soybean. Plant Molecular Biology, 55: 479-489.
Dufourmantel, N., Tissot, G., Goutorbe, F., Garcon, F., Muhr, C., Jansens, S.. Pelissier, B., Peltier, G. and Dubald, M. 2005. Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Molecular Biology, 58: 659-668.
Eibl, C., Zou, Z., Beck, A., Kim, M., Mullet, J. and Koop, H. U. 1999. In vivo analysis of plastid psbA, rbcL and rpl32 UTR elements by chloroplast transformation: tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiency. Plant Journal, 19: 333-345.
Farran, I., Rio-Manterola, F., Iniguez, M., Garate, S., Prieto, J. and Mingo-Castel, AM. 2008. High-density seedling expression system for the production of bioactive human cardiotrophin-1 a potential therapeutic cytokine, in transgenic tobacco chloroplasts. Plant Biotechnology Journal, 6: 516-27.
Fernández‐San Millán, A., Mingo‐Castel, A., Miller, M. and Daniell, H. 2003. A chloroplast transgenic approach to hyper‐express and purify Human Serum Albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnology Journal, 1: 71-79.
Herz, S., Fussl, M., Steiger, S. and Koop, H. U. 2005. Development of novel types of plastid transformation vectors and evaluation of factors controlling expression. Transgenic Research, 14: 969-982.
Hirose, T. and Sugiura, M. 1996. Cis-acting elements and trans-acting factors for accurate translation of chloroplast psbA mRNAs: development of an In Vitro translation system from tobacco chloroplasts. EMBO Journal, 15: 1687-1695.
Hou, B. K., Zhou, Y. H., Wan, L. H., Zhang, Z. L., Shen, G. F., Chen, Z. H. and Hu, Z. M. 2003. Chloroplast transformation in oilseed rape. Transgenic Research, 12: 111-114.
Huang, F. C., Klaus, SMJ. Herz, S. Zuo, Z. Koop, HU.and Golds, TJ. 2002. Efficient plastid transformation in tobacco using the aphA-6 gene and kanamycin selection. Molecular Genetics and Genomic,268:19-27.
Jalali Javaran, M., Mohebodini, M., Masoumi, Asl A., Saifi Nabi Abad, H., Alizadeh, H.. Mahbodi, F., Ismail, A., Rajabi Memari, H., Moini, A., Honari, H., Bagheri, Kh., Yaghobi, M. M., Zebarjadi, A. R., Rasai M. J., Shakib, A. M., Rahbarizadeh, F., Masoumi, H., Forozandeh Moghadam, M., Sharifi-Sirchi, G. R., Dymyad, S., Sadat Noori, S. A., Vishlaghi, N., Hosseini Pour, A., Taheri Javan, N., Razmi, Sh., Rahimi Far, P., Latif, B., Abdolinasab, M., Azhdari, H., Poorkhaleghi, M., Razmi, A., Khosravi, H. and Kazemi, H. 2010. The success of molecular farming in Iran. Agricultural Biotechnology, 1: 19-47.
Kanamoto, H. Yamashita, A. Asao, H. Okumura, S. Takase, H. Hattori, M. Yokota, A. and Tomizawa, K. 2006. Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids. Transgenic Research, 15:205-217.
Khan, M. S. and Maliga, P. 1999. Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nature biotechnology, 17: 910-915.
Klaus, S. M. J., Huang, F. C. Eibl, C. Koop, H. U. and Golds, T. J. 2003. Rapid and proven production of transplastomic tobacco plants by restoration of pigmentation and photosynthesis. Plant Journal, 35:811-21.
Koop, H. U., Herz, S., Golds, T. and Nickelsen, J. 2007. The genetic transformation of plastids. Cell and Molecular Biology of Plastids, 19: 457-510.
Koop, H. U., Steinmuller, K., Wagner, H., Rossler, C., Eibl, C. and Sacher, L. 1996. Integration of foreign sequences into the tobacco plastome via polyethylene glycol-mediated protoplast transformation. Planta, 199: 193-201.
Kumar, S., Dhingra, A. and Daniell, H. 2004. Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Molecular Biology, 56: 203-216.
Kuroda, H. and Maliga, P. 2001. Sequences downstream of the translation initiation codon are important determinants of translation efficiency in chloroplasts. Plant Physiology, 125: 430-436.
Kuroda, H., and Maliga, P. 2002. Overexpression of the clpP 5'-untranslated region in a chimeric context causes a mutant phenotype, suggesting competition for a clpP-specific RNA maturation factor in tobacco chloroplasts. Plant Physiology, 129: 1600-160.
Latif, B., Mohammadi-Najafabadi, R. Jalali-Javaran, J. Rajabi-Memari, H. 2012. Analysis of synonymous codon usage in chloroplast genomes of different organisms. The 11th International Conference on Bioinformatics, Bangkok, Thailand, Oct. 3-5.
Lee, SB., Li, B. Jin, S. and Daniell, H. 2011. Expression and characterization of antimicrobial peptides retrocyclin-101 and protegrin-1 in chloroplasts to control viral and bacterial infections. Plant Biotechnology Journal, 9:100-15.
Lee, S. M., Kang, K. H., Chung, H., Yoo, S. H., Xu. XM., Lee, S. B., Cheong, J. J., Daniell, H. and Kim, M. 2006. Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Molecular Cells, 21: 401-410.
Leelavathi, S. and Reddy, V. S. 2003. Chloroplast expression of His-tagged GUS-fusions: a general strategy to overproduce and purify foreign proteins using transplastomic plants as bioreactors. Molecular Breeding, 11: 49-58.
Lerbs-Mache, S. 1993. The 110-kDa polypeptide of spinach plastid DNA-dependent RNA polymerase: single-subunit enzyme or catalytic core of multimeric enzyme complexes? Proceedings of the National Academy of Sciences USA, 90: 5509-5513.
Lgloi, G. and Kössel, H. 1992. The transcriptional apparatus of chloroplasts. Critical Reviews in Plant Sciences, 10: 525-558.
Lim, S., Ashida, H., Watanabe, R., Inai, K., Kim, YS. and Mukougawa, K. 2011. Production of biologically active human thioredoxin 1 protein in lettuce chloroplasts. Plant Molecular Biology, doi:10.1007/s11103-011-9745-5.
Liu, C. W., Lin, C.C., Chen, J. and Tseng, M. J. 2007. Stable chloroplast transformation in cabbage (Brassica oleracea L. var. capitata L.) by particle bombardment. Plant Cell Report, 26: 1733-1744.
Lutz, K. A. and Maliga, P. 2007. Construction of marker-free transplastomic plants. Current Opinion in Biotechnology, 18: 107-114.
Lutz, K. A., Svab, Z. and Maliga, P. 2006. Construction of marker-free transplastomic tobacco using the Cre-loxP site-specific recombination system. Nature Protocols, 1: 900-910.
Maliga, P. 1993. Towards plastid transformation in flowering plants. Trends in biotechnology, 11: 101-107.
Maliga, P. 2003. Progress towards commercialization of plastid transformation technology. Trends in Biotechnology, 21: 20-28.
Maliga, P. 2004. Plastid transformation in higher plants. Annual. Reviews. Plant Biology, 55: 289-313.
Maliga, P. and Svab, Z. 2011. Engineering the plastid genome of Nicotiana sylvestris, a diploid model species for plastid genetics. Methods Molecular Biology, 701: 37-50.
Manuell, A., Beligni, M. V., Yamaguchi, K. and Mayfield, S. P. 2004. Regulation of chloroplast translation: interactions of RNA elements, RNA-binding proteins and the plastid ribosome. Biochemical Society Transactions, 32: 601-605.
McCormac, D. J. and Barkan, A. 1999. A nuclear gene in maize required for the translation of the chloroplast atpB/E mRNA. Plant Cell, 11: 1709-1716.
Monde, R. A., Greene, J. C. and Stern, D. B. 2000. The sequence and secondary structure of the 3'-UTR affect 3'-end maturation, RNA accumulation, and translation in tobacco chloroplasts. Plant Molecular Biology, 44: 529-542.
Newell, C. A., Birch-Machin, I., Hibberd, J. M. and Gray, J. C. 2003. Expression of green fluorescent protein from bacterial and plastid promoters in tobacco chloroplasts. Transgenic Research, 12: 631-634.
Nguyen, TT. Nugent, G. Cardi, T. and Dix, PJ. 2005. Generation of homoplasmic plastid transformants of a commercial cultivar of potato (Solanum tuberosum L.). Plant Science, 168:1495-1500.
Nugent, G. D., Coyne, S., Nguyen, T. T., Kavanagh, T. and Dix, PJ. 2006. Nuclear and plastid transformation of Brassica oleracea var. botrytis (cauliflower) using PEG-mediated uptake of DNA into protoplasts. Plant Science, 170:135-142.
Obembe, O. O., Popoola, J. O., Leelavathi, S. and Reddy, V. S. 2010. Recent advances in plastid transformation. Indian Journal of Science & Technology, 3: 1229-1235.
Oey, M., Lohse, M., Kreikemeyer, B. and Bock, R. 2009a. Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant Journal, 57: 436-450.
Oey, M., Lohse, M. Scharff, LB. Kreikemeyer, B. and Bock, R. 2009b. Plastid production of protein antibiotics against pneumonia via a new strategy for high-level expression of antimicrobial proteins. Proc Natl Acad Sci USA, 106:6579-84.
Okumura, S., Sawada, M. Park, Y. W., Hayashi, T. Shimamura, M. Takase, H. and Tomizawa, K. 2006. Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Research, 15: 637-646.
Padidam, M. 2003. Chemically regulated gene expression in plants. Current Opinion in Plant Biology, 6: 169-177.
Razmi, Sh., Jalali javaran, M., Bagheri, A., Honari, H., Mohebodini, M. and Soleimanizadeh, M. 2013 Expressing of the human interferon gamma gene in the Tobacco chloroplast. Novin Genetic Journal, 8: 333-340.
Řepková, J. 2010. Potential of chloroplast genome in plant breeding. Czech Journal of Genetics and Plant Breeding, 46: 103-113.
Roh, K. H., Shin, K. S., Lee, Y. H., Seo, S. C., Park, H. G., Daniell, H. and Lee, S. B. 2006. Accumulation of sweet protein monellin is regulated by the psbA 5′ UTR in tobacco chloroplasts. Journal of Plant Biology, 49: 34-43.
Rott, R., Drager, R. G., Stern, D. B. and Schuster, G. 1996. The 3' untranslated regions of chloroplast genes in Chlamydomonas reinhardtii do not serve as efficient transcriptional terminators. Molecular General and Genetics, 252: 676-683.
Ruf, S., Hermann, M., Berger, I. J., Carrer, H. and Bock, R. 2001. Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nature biotechnology, 19: 870-875.
Ruhlman, T., Ahangari, R., Devine, A., Samsam, M. and Daniell, H. 2007. Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplasts oral administration protects against development of insulitis in non-obese diabetic mice. Plant Biotechnology Journal, 5: 495-510.
Ruhlman, T., Verma, D., Samson, N. and Daniell, H. 2010. The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiology, 152: 2088-2104.
Schillberg, S., Zimmermann, S., Voss, A. and Fischer, R. 1999. Apoplastic and cytosolic expression of full‐size antibodies and antibody fragments in Nicotiana tabacum. Transgenic research, 8: 255-263.
Scotti, N., Rigano, M. M. and Cardi, T. 2011. Production of foreign proteins using plastid transformation. Biotechnology Advances, 30: 387-397.
Sidorov, V. A., Kasten, D., Pang, S. Z., Hajdukiewicz, P. T. J., Staub, J. M. and Nehra, N. S. 2002. Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. The Plant Journal, 19: 209-216.
Sikdar, S., Serino, G., Chaudhuri, S. and Maliga, P. 1998. Plastid transformation in Arabidopsis thaliana. Plant Cell Reports, 18: 20-24.
Sriraman, P. Silhavy, D. and Maliga, P. 1998. The phage-type PclpP-53 plastid promoter comprises sequences downstream of the transcription initiation site. Nucleic Acids Research, 26: 4874-4879.
Staub, J. M., Garcia, B., Graves, J., Hajdukiewicz, P. T. J., Hunter, P., Nehra, N., Paradkar, V., Schlittler, M., Carroll, J. A. and Spatola, L. 2000. High-yield production of a human therapeutic protein in tobacco chloroplasts. Nature Biotechnology, 18: 333-338.
Staub, J. M. and Maliga, P. 1993. Accumulation of D1 polypeptide in tobacco plastids is regulated via the untranslated region of the psbA mRNA. EMBO Journal 12: 601-606.
Staub, J. M., Maliga, P. 1992. Long regions of homologous DNA are incorporated into the tobacco plastid genome by transformation. Plant Cell, 4: 39-45.
Stern, D. B. and Gruissem, W. 1989. Chloroplast mRNA 3' end maturation is biochemically distinct from prokaryotic mRNA processing. Plant Molecular Biology, 13: 615-625.
Sugiura, M., Hirose, T. and Sugita, M. 1998. Evolution and mechanism of translation in chloroplasts. Annual review of Genetics, 32: 437-459.
Svab, Z., and Maliga, P. 1993. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proceedings of the National Academy of Sciences USA, 90: 913-917.
Svab, Z., Hajdukiewicz, P. and Maliga, P. 1990. Stable transformation of plastids in higher plants. Proceedings of the National Academy of Sciences USA, 87: 8526-8530.
Tewari, K. K. and Wildman, S. G. 1966. Chloroplast DNA from tobacco leaves. Science, 153: 1269-1271.
Tregoning, J. S., Nixon, P., Kuroda, H., Svab, Z., Clare, S., Bowe, F., Fairweather, N., Ytterberg, J., van Wijk, K. J., Dougan, G. and Maliga, P. 2003. Expression of tetanus toxin Fragment C in tobacco chloroplasts. Nucleic Acids Research, 31: 1174-1179.
Tissot, G., Canard, H., Nadai, M., Martone, A., Botterman, J. and Dubald, M. 2008. Translocation of aprotinin, a therapeutic protease inhibitor, into the thylakoid lumen of genetically engineered tobacco chloroplasts. Plant Biotechnology Journal, 6: 309-20.
Verma, D. and Daniell, H. 2007. Chloroplast vector systems for biotechnology applications. Plant Physiology, 145: 1129-1143.
Warzecha, H. 2008. Biopharmaceuticals from plants: a multitude of options for postt ranslational modifications. Biotechnology and Genetic Engineering Reviews, 25: 315-330.
Wirth, S., Segretin, M. E., Mentaberry, A. and Bravo-Almonacid, F. 2006. Accumulation of hEGF and hEGF-fusion proteins in chloroplast-transformed tobacco plants is higher in the dark than in the light. Journal Biotechnology, 125: 159-172.
Wurbs, D., Ruf, S. and Bock, R. 2007. Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant Journal, 49: 276-288.
Yarbakht, M., Jalali javaran, M., Nikkhah, M., Mohebodini, M. 2012. Study of human insulin gene expression in transplastoic tobacco. 12th Iranian genetic Congress. May 22-24. Tehran, Iran.
Ye, G. N., Hajdukiewicz, P. T., Broyles, D., Rodriguez, D., Xu, C. W., Nehra, N. and Staub, J. M. 2001. Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco. Plant Journal, 25: 261-270.
Zou, Z., Eibl, C. and Koop, H. U. 2003. The stem-loop region of the tobacco psbA 5′ UTR is an important determinant of mRNA stability and translation efficiency. Molecular Genetics and Genomics, 269: 340-349.
Zoubenko, O. V., Allison, L. A., Svab, Z. and Maliga, P. 1994. Efficient targeting of foreign genes into the tobacco plastid genome. Nucleic Acids Research, 22: 3819-3824.
Zubko, M. K., Zubko, E. I., van Zuilen, K., Meyer, P. and Day, A. 2004. Stable transformation of petunia plastids. Transgenic Research, 13: 523-530.