تجزیه و تحلیل ژنتیکی و فیلوژنتیکی ناحیه HVR-I از ژنوم میتوکندری در گوسفند نژاد افشاری

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری ژنتیک و اصلاح نژاد دام گروه علوم دامی دانشکده کشاورزی دانشگاه فردوسی مشهد، مشهد

2 استاد گروه علوم دامی دانشکده کشاورزی دانشگاه فردوسی مشهد، مشهد

3 دانشجوی دکتری ژنتیک و اصلاح نژاد دام، گروه علوم دامی دانشکده کشاورزی دانشگاه فردوسی مشهد، مشهد

4 دانشیار گروه علوم دامی دانشکده کشاورزی دانشگاه شهرکرد، شهرکرد

5 دانشجوی کارشناسی‌ارشد ژنتیک و اصلاح نژاد دام، گروه علوم دامی دانشکده کشاورزی دانشگاه فردوسی مشهد، مشهد

چکیده

خلوص ژنتیکی نژادهای گوسفند به‌علت تلاقی‌های کنترل نشده دستخوش تغییر شده است، استفاده از نشانگرهای ژنتیکی توالی­یابی ژنوم میتوکندری، یکی از راه‌های بررسی این تغییرات است. هدف از این تحقیق بررسی میزان تنوع  ناحیه HVR-I از ژنوم میتوکندری گوسفند نژاد افشاری می­باشد. برای این منظور از تعداد 20 رأس گوسفندان افشاری غیرخویشاوند نمونه خون جمع‌آوری و پس از استخراج DNA از آنها، ناحیه موردنظر توسط پرایمرهای اختصاصی با تکنیک PCR، تکثیر و  قطعات موردنظر توالی­یابی شدند. با تجزیه داده­های حاصل، تعداد 5 هاپلوتیپ در این جمعیت شناسایی شد. مقایسه توالی HVR-I گوسفند افشاری با توالی ناحیه مشابه از ژنوم گوسفندان سایر نژاد­ها، مشخص کرد این نژاد متعلق به گروه هاپلوتیپی A می­­باشد، همچنین مقایسه توالی مذکور گوسفند افشاری با منطقه مشابه در گروه هاپلوتیپی A از ژنوم گوسفندان سایر نژادها، نشان داد که گوسفند افشاری داری کمترین فاصله ژنتیکی با نژاد بلوچی و مغانی ایران می­باشد. همچنین تجزیه و تحلیل درخت  فیلوژنی رسم شده برای گروه هاپلوئیدی A نشان داد که  احتمالاً قوچ و میش اوریال به‌عنوان منشا نژاد افشاری و دو نژاد دیگر گوسفند محسوب می‌شود.
 

کلیدواژه‌ها


عنوان مقاله [English]

Genetic and phylogenetic analyses of HVR-I region of mtDNA in Afshari sheep breed

نویسندگان [English]

  • zana pirkhezraeeian 1
  • mojtaba tahmorespour 2
  • arezoo mohammadhashemi 3
  • nasrollah pirani 4
  • marjan Azghandi 5
چکیده [English]

Due to uncontrolled crosses, the genetic purity of sheep breeds has changed. Therefore, using of genetic markers of mitochondrial sequencing is one the ways to study these changes. This experiment carried out to evaluate the diversity of HVR-I region from mtDNA in Afshari sheep breed. For conducting this study, the blood samples were collected from 20 unrelated Afshari sheep breed. After DNA extraction, this region of mtDNA was amplified with specific primers using PCR, and then the desired region was sequenced. After analyzing the data, 5 genetic haplotypes were determined in the studied population. Then the HRV-I region of Afshari breed were compared with other sheep breeds and results showed that this breed belongs to haplogroup A. The phylogenetic tree showed that this breed has the lowest genetic distance from other two Iranian sheep breeds (Balochi and Moghani). It can be concluded that Ovis orial may be the origin of Afshari and other Iranian sheep breeds.

کلیدواژه‌ها [English]

  • HVR-I region - D-Loop- Afshari sheep- haplotype
Shafaq motlagh, A, 1386. Determination the mtDNA D - loop  Sequence  in goat and sheep breed, , Master thesis. Mashhad,iran
Mohammadhashemi, A. 1388, sequencing of HVR1 region of mtDNA in Iranian moghani sheep breed, Master    thesis.tabriz.iran
Azor, P. Monteagudo, L. Luque, M. Tejedor, M. Rodero, E. Sierra I. Herrera, M.  Rodero , A. and  Arruga, M. 2005. Phylogenetic relationships among Spanish goats breeds. Animal genetics36(5): 423-425.
Cai, X. Chen, H. Lei, C. Wang, S. Xue, K. and Zhang, B. 2007. mtDNA diversity and genetic lineages of eighteen cattle breeds from Bos taurus and Bos indicus in China. Genetica, 131(2): 175-183.
Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): an integrated software package for population genetics data    analysis. Evolutionary bioinformatics online. 2005; 1: 47–50.
Ghovvati, S. Nassiri, M. R. Mirhoseini, S. Moussavi, A. H. and  Javadmanesh, A. 2009. Fraud identification in industrial meat products by multiplex PCR assay. Food Control, 20(8): 696-699.
Hiendleder, S.  Kaupe, B.  Wassmuth, R. and Janke A. 2002. Molecular analysis of wild and domestic sheep questions current nomenclature and provides evidence for domestication from two different subspecies.    Proceedings of the Royal Society of London. Series B, Biological sciences, 269(1494): 893-904.
Hiendleder, S. Lewalski, H. Wassmuth, R. and  Janke, A. 1998. The complete mitochondrial DNA sequence of the domestic sheep (Ovis aries) and comparison with the other major ovine haplotypeJournal of molecular evolution., 47(4): 441-448.
Kim, K. I. Lee, J. H.  Li, K. Zhang, Y. P.  Lee, S. S. Gongora, J and Moran, C. 2002. Phylogenetic relationships of Asian and European pig breeds determined by mitochondrial DNA D-Loop sequence polymorphism. Animal genetics, 33(1): 19-25.
Knudsen, B. Knudsen, T. Flensborg, M. Sandmann, H. Heltzen, M. Andersen, A. Dickenson, M. Bardram, J. Steffensen, P. Mønsted, S. Lauritzen, T. Forsberg, R. Thanbichler, A. Jannick, D.  Görlitz, L. Rasmussen, J. Tordrup, D. Værum, M. Nygaard, M. Hachenberg, C. Fisker, E. Dekker, P. Schultz, J. Hein,M.K. and Sinding, J. 2007. CLC Main Workbench. Version 5.5. Aarhus, Denmark, CLC bio
Lalitha, S. 2000. Primer premier 5. Biotech Software & Internet Report: The Computer Software Journal for Scient, 1(6): 270-272.
Mohammadipestebik, F. Pirany, N. Shojaa, J. and  Mohammadhashemi, A. 2011. Determination the mtDNA d-loop sequence in marandi native chicken population and its phylogenic relationships with other breeds. Animal science researches (faculty of agriculture, university of tabriz), 21(2): 1.
Naghash, H. S. Naderi, P. Taberlet. 2007. Large-Scale Mitochondrial DNA Analysis of the Domestic Goat Reveals Six Haplogroups with High Diversity. Plos one. Issue 10:1-10.
Nei, M. 1987. Molecular evolutionary genetics: Columbia University Press.
Pardeshi, V. Kadoo, N.  Sainani, M. Meadows, J. Kijas,J. and Gupta, V. 2007. Mitochondrial haplotypes reveal a strong genetic structure for three Indian sheep breeds. Animal genetics, 38(5): 460-466.
Parvari, R. Avivi, A. Lentner, F. Ziv, E. Telor, S. Burstein,Y. and Schechter,I. 1988. Chicken immunoglobulin gamma-heavy chains: limited VH gene repertoire, combinatorial diversification by D gene segments and evolution of the heavy chain locus. The EMBO journal, 7(3): 739.
Pirani, N. Mohammadhashemi, A. Alijani, S. Rezazadeh, R. and Ghanbari, S. 2010. Molecular Analysis of  Mazandrani native chicken population based on HVR-I region of Mitochondrial DNA. Journal Agriculture Biotechnology, 1(2):  53- 60.
Tamura, K. Peterson, D. Peterson, N. Stecher, G. Nei, M. and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods Molecular biology and evolution, 28(10): 2731-2739.
Tapio, M. Marzanov, N. Ozerov, M. Ćinkulov, M. Gonzarenko, G. Kiselyova, T. Murawski, M Viinalass, H. and Kantanen, J. 2006. Sheep mitochondrial DNA variation in European, Caucasian, and Central Asian areas. Molecular biology and evolution, 23(9): 1776-1783.
Technelysium PL. Chromas lite version 2.01 2007.
Teletchea, F. Maudet, C. and Hänni, C. 2005. Food and forensic molecular identification: update and challenges. Trends in biotechnology, 23(7): 359-366.
Wood, N. and Phua, S. 1996. Variation in the control region sequence of the sheep mitochondrial genome Animal genetics, 27(1):25-33.
Zeder, M.A. Emshwiller, E. Smith, B. D. and Bradley, D. G. 2006. Documenting domestication: the intersection of genetics and archaeology. Trends in genetics, 22(3):139-155.