Identification of QTL (Quantitative Trait Loci) Affecting Skeletal Traits on Second Chromosome of Japanese Quail

Document Type : research

Authors

1 PhD Graduated, Department of Animal Sciences, Faculty of Agricultural Sciences and Food Industries, Islamic Azad University, Science and Research Branch, Tehran, Iran

2 Professor, Department of Animal Sciences, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman

3 MSc Graduated, Department of Animal Sciences, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman

Abstract

This study aims to identify quantitative trait loci (QTL) related to the skeletal traits of Japanese quail on chromosome 2. Eight males and eight females from wild type (W) and white (S)) were selected as the parent generation (F0) and the crossing between them was reciprocal. The population consisted 422 birds of F2 population through random mating of F1 generation (17 progenies (SW) derived from crosses between white male × wild female (14 females and three males) and 17 progenies (WS) derived from crosses between wild male × white female (11 females and six males)), which were slaughtered at the end of a 35-day period of breeding. Subsequently, the phenotypic characteristics of the bone were recorded and blood samples were taken for genotyping four microsatellite markers on chromosome 2. QTL analysis was performed by least squares interval mapping method based on regression; QTL effects were estimated using three different statistical models (additive model; additive and dominance model; additive, dominance, and imprinting model); and 19 QTL were identified with nine traits. The weight of left foot, femur weight, and diameter of left and right feet had significant QTL almost in most of the models. The results of this study showed that there were significant loci on chromosome 2, which could affect some traits of bone at the significance level of P

Keywords

Main Subjects


Arden, N. K., Baker, J., Hogg, C., Baan, K. and Spector, T. D. 1996. The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length: a study of postmenopausal twins. Bone Mineral Research, 11(4): 530-534.
Bishop, S. C., Fleming, R. H., McCormack, H. A., Flock, D. K. and Whitehead, C. C. 2000. Inheritance of bone characteristics affecting osteoporosis in laying hens. British Poultry Science, 41: 33-40.
Carlborg, O., Kerje, S., Schutz, K., Jacobsson, L., Jensen, P. and Andersson, L. 2003. A global search reveals epistatic interaction between QTL for early growth in the chicken. Genetic Research, 13: 413-421.
Cheverud, J., Routman, E., Duarte, F., van Swinderen, B., Cothran, K. and Perel, C. 1996. Quantitative trait loci for lurine growth. Genetics, 142: 1305-1319.
Churchill, G. A. and Doerge, R. W. 1994. Empirical threshold values for quantitative trait mapping. Genetics, 138: 963-971.
Cook, M. E. 2000. Skeletal deformities and their causes: Introduction. Poultry Science, 79: 982-984.
Crooijmans, R. P. M. A., Dijkhof, R. J. M., VanDerPoel, J. J., Groenen, M. A. M. 1997. New microsatellite markers in chicken optimized for automated fluorescent genotyping. Animal Genetics, 28: 427-437.
Day, E. J. 1990. Future research needs focus on new, old problems. Feedstuffs, 23(62): 12-15.
Deng, H. W., Chen, W. M., Recker, S., Stegman, M. R., Li, J. L., Davies, K. M., Zhou, Y., Deng, H., Heaney, R. and Recker, R. R. 2000. Genetic determination of Colles 'fracture and differential bone mass in women with and without Colles' fracture. Journal of Bone and Mineral Research, 15(7): 1243-1252.
Groenen, M. A. M., Cheng, H. H., Bumstead, N., Benkel, B. F., Briles, W. E., Burke, T., Burt, D. W., Crittenden, L. B., Dodgson, J., Hillel, J., Lamont, S., Ponce de Leon, A., Soller, M., Takahashi, H. and Vignal, A. 2000. A consensus linkage map of the chicken genome. Genetic Research, 10: 137-147.
Haley, C. S., Knott, S. A. and Elsen, J. 1994. Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics, 136: 1195-1207.
Jennen, D. G. J., Vereijken, A. L. J., Bovenhuis, H., Crooijmans, R. P. M. A., Veenendaal, A., van der Poel, J. J. and Groenen, M. A. M. 2004. Detection and localization of quantitative trait loci affecting fatness in broilers, Poultry Science, 83: 295-301.
Julian, R. J. 1998. Rapid growth problems: ascites and skeletal deformities in broilers. Poultry Science. 77: 1773-1780.
Kayang, B., Vignal, A., Inoue-Murayama, M., Miwa, M., Monvoisin, J., Ito, S. and Minvielle, F. 2004. A first-generation microsatellite linkage map of the Japanese quail. Animal Genetics, 35: 195-200.
Kenney-Hunt, J., Vaughn, T., Pletscher, L., Peripato, A., Routman, E., Cothran, K., Durand, D., Norgard, E., Perel, C. and Cheverud, J. 2006. Quantitative trait loci for body size components in mice. Mammalian Genome, 17: 526-53.
Kenney-Hunt, J., Wang, B., Norgard, E. A., Fawcett, G., Falk, D., Pletscher, L. S., Jarvis, J. P., Roseman, C., Wolf, J. and Cheverud, J. 2008. Pleiotropic patterns of quantitative trait loci for 70 murine skeletal traits. Genetics, 178: 2275-2288.
Kerje, S., Carlborg, O., Jacobsson, L., Schutz, K., Hartmann, C., Jensen, P. and Andersson, L. 2003. The twofold difference in adult size between the red jungle fowl and White Leghorn chickens is largely explained by a limited number of QTLs. Animal Genetics, 34(7): 264-274.
Knott, S. A., Marklund, L., Haley, C. S., Andersson, K., Davies, W., Ellegren, H., Fredholm, M., Hansson, I., Hoyheim, B., Lundstrom, K., Moller, M. and Andersson, L. 1998. Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genetics, 149: 1069-1080.
Li, H., Deeb, N., Zhou, H., Mitchell, A. D., Ashwell, C. M. and Lamont, S. J. 2003. Chicken quantitative trait loci for growth and body composition associated with transforming growth factor-B genes. Poultry Science, 82: 347-356.
Mercer, J. T. and Hill, W. G. 1984. Estimation of genetic parameters for skeletal defects in broiler chickens. Heredity, 53: 193-203.
Miller, S. A., Dykes, D. D. and Polesky, H. F. 1988. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16: 12-15.
Peixoto, J. O., Kawski, V. L., Ibelli, A. M. G., Zanella, R., Mazzuco, H., Souza, C. G., Munar, D. P., Jaenisch, F. R. F. and Ledur, M. C. 2014. Genetic evaluation of body weight and tibia resistance in broilers. Proceedings, 10th World Congress of Genetics Applied to Livestock Production. 864.
Pines, M. 2007. Poultry bone disorders. Australian Poultry Science Symposium, 19: 110-121.
Rubin, C. J., Brandstrom, H., Wright, D., Kerje, S., Gunnarsson, U., Schutz, K., Fredriksson, R., Jensen, P., Andersson, L., Ohlsson, C., Mallmin, H., Larsson, S. and Kindmark, A. 2007a. Quantitative trait loci for BMD and bone strength in an intercross between domestic and wild type chickens. Journal of Bone and Mineral Research, 22(3): 375-384.
Rubin, C. J., Lindberg, J., Fitzsimmon, C., Savolainen, P., Jensen, P., Lundeberg, J., Andersson, L. and Kindmark, A. 2007b. Differential gene expression in femoral bone from red jungle fowl and domestic chicken, differing for bone phenotypic traits. BMC Genomics, 8: 208.
Sasaki, O., Odawara, S., Takahashi, H., Nirasawa, K., Oyamada, Y., Yamamoto, R., Ishii, K., Nagamine, Y., Taked, A. H., Kobayashi, E. and Furukawa, T. 2004. Genetic mapping of quantitative trait loci affecting body weight, egg character and egg production in F2 intercross chickens. Animal Genetics, 35: 188-194.
Schreiweis, M. A., Orban, J. I., Ledur, M. C. and Hester, P. Y. 2003. The use of densitometry to detect differences in bone mineral density and content of live White Leghorns fed varying levels of dietary calcium. Poultry Science, 82: 1292-1301.
Seaton, G., Hernandez, J., Grunchec, J. A., White, I., Allen, J., de Koning, D. J., Wei, W., Berry, D., Halley, C. and Knott, S. 2006. GridQTL: a grid portal for QTL mapping of compute intensive datasets. In Proceedings of 8th World Congress on Genetics Applied to Livestock Production.
Sharman, P. W. A., Morrice, D. R., Law, A. S., Burt, D. W. and Hocking, P. M. 2007. Quantitative trait loci for bone traits segregating independently of those for growth in an F-2 broiler X layer cross. Cytogenetic and Genome Research, 117: 296-304.
Shibusawa, M., Minai, S., Nishida-Umehara, C., Suzuk, I. T., Mano, T., Yamada, K., Namikawa, T. and Matsuda, Y. 2001. A comparative cytogenetic study of chromosome homology between chicken and Japanese quail. Cytogenetics and Cell Genetics, 95: 103-109.
Siwek, M., Cornelissen, S. J. B., Buitenhuis, A. J., Nieuwland, M. G. B., Bovenhuis, H., Crooijmans, R. P. M. A., Groenen, M. A. M., Parmentier, H. K. and van der Poel, J. J. 2004. Quantitative trait loci for body weight in layers differ from quantitative trait loci specific for antibody responses to sheep red blood cells. Poultry Science, 83: 853-859.
Sullivan, T. W. 1994. Skeletal problems in poultry: estimated annual cost and descriptions. Poultry Science, 73: 869-882.
Tuiskula-Haavisto, M., Honkatukia, M., Vilkki, J., de Koning, D. J., Schulman, N. F. and Maki-Tanila, A. 2002. Mapping of quantitative trait loci affecting quality and production traits in egg layers. Poultry Science, 81: 919-927.
Van Kaam, J. B. C. H. M., Groenen, M. A. M., Bovenhuis, H., Veenendaal, A., Vereijken, A. L. J. and Arendonk, J. A. M. 1999. Whole genome scan in chickens for quantitative trait loci affecting growth and feed efficiency, Poultry Science, 78: 15-23.
Wakasugi, N. 1984. Japanese quail. In Evolution of Domesticated Animals. In: Mason IL (Eds), New-York, Longman. Pp. 319-321.
Zhang, H., Zhang, Y. D., Wang, S. Z., Liu, X. F., Zhang, Q., Tang, Z. Q. and Li, H. 2010. Detection and fine mapping of quantitative trait loci for bone traits on chicken chromosome one. Journal of Animal Breeding and Genetics, 127: 462-468.
Zhou, H., Mitchell, A. D., McMurtry, J. P., Ashwell, C. M. and Lamont, S. J. 2007. Insulin-like growth factor-1 gene polymorphism associations with growth, body composition, skeleton integrity, and metabolic traits in chickens. Poultry Science, 84: 212-219.