شناسایی QTLs مرتبط با برخی از صفات مورفولوژیکی در توتون شرقی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه اصلاح و بیوتکنولوژی گیاهی، دانشکده کشاورزی دانشگاه ارومیه، ارومیه

2 دانشیار گروه اصلاح و بیوتکنولوژی گیاهی، دانشکده کشاورزی دانشگاه ارومیه، ارومیه

3 استادیار گروه زراعت و اصلاح نباتات، دانشکده کشاورزی دانشگاه مراغه، مراغه

چکیده

به منظور شناسایی مکان­های ژنی مرتبط با صفات مورفولوژیک شامل تعداد برگ، طول برگ، عرض برگ، سطح برگ، وزن تر برگ، وزن خشک برگ، ارتفاع گیاه و قطر ساقه در توتون ‌شرقی، یک جمعیت ژنتیکی متشکل از ۱۰۰ بوته ۲F حاصل از تلاقی دو ژنوتیپ توتون شرقی ۴۰۶ SPT (والد پدری) و ۳۱ Basma seres (والد مادری)، مورد ارزیابی قرار گرفت. برای شناسایی QTLها، نقشه پیوستگی با ۲۳ نشانگر SSR و ۲۹ نشانگرISSR  تهیه گردید که 8/570 سانتی­مورگان از ژنوم توتون را پوشش می­دهد. نتایج مکان­یابی ژنی نشان داد که ۱۱ QTL در کنترل صفات مورد مطالعه نقش دارند. حداکثر تغییرات فنوتیپی توجیه شده توسط QTLها 2/25 درصد بود. در این بررسی، برای صفت تعداد برگ هیچ QTLی شناسایی نگردید. نتایج نشان داد که برخی QTLهای شناسایی شده برای صفات ارتفاع گیاه، طول برگ، قطر ساقه، وزن خشک و تر برگ هم مکان هستند که می‌توانند باعث افزایش کارآیی انتخاب به کمک نشانگر و پیشبرد برنامه‌های به‌نژادی گیاهی در توتون شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification of QTLs Associated with Some Morphological Traits in Oriental Tobacco

نویسندگان [English]

  • Faramarz Hoshyardel 1
  • Reza Darvishzadeh 2
  • Hamid Hatami Maleki 3
1 Urmia University
3 University of Maragheh
چکیده [English]

In order to identify quantitaive trait loci (QTLs) associated with morphological traits including number of leaves, leaf length, leaf width, leaf area, leaf fresh weight, leaf dry weight, plant height and stem diameter in oriental type tobacco, a genetic population comprising 100 F2 individuals from a cross between two oriental type genotypes, namely Basma seres 31 (maternal) x SPT 406 (paternal) was evaluated under field conditions. Subsequently a linkage map  based on 23 simple sequence repeat (SSR) markers and 29 inter simple sequence repeat (ISSR) markers was constructed which covered 570.8 cM of tobacco genome. Composite interval mapping could identify 11 QTLs involved in controlling the investigated traits. The maximum percentage of phenotypic variance (R2) explained by QTLs was 25.2%. In this study, no QTL was identified for number of leaves. The results showed the existence of co-localized QTLs for some of the studied traits including plant height, leaf length, stem diameter and leaf dry weight which enhances the efficiency of marker-assisted selection in tobacco breeding programs.

کلیدواژه‌ها [English]

  • Gene mapping
  • ISSR marker
  • quantitative traits
  • SSR marker
  • transgressive segregation
Arslan, B. and Okunus, A. 2006. Genetic and geographic polymorphism of cultivated tobaccos (Nicotiana tabacum) in Turkey. Russian Journal of Genetics, 42: 667-671.
Basten, C. J., Weir, B. S. and Zeng, Z. B. 2001. QTL Cartographer: A Reference Manual and Tutorial for QTL Mapping. Department of Statistics, North Carolina State University, USA. 395 Pp.
Bindler, G., Hoeven, R., Gunduz, I., Plieske, J., Ganal, L., Rossi, L., Gadani, F. and Donini, P. 2007. A  microsatellite marker based linkage map of tobacco. Theoretical and Applied Genetics, 114: 341-349.
Bindler, G.,Plieske, J., Bakaher, N., Gunduz, I., Ivanov, N., Vander Hoeven, R., Ganal, M. and Donini, P. 2011. A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theoretical and Applied Genetics, 123: 219-230.
Chai, C. C., Chai, L. G., Cai, C. C., Lin, G. P., Wang, Y. and Xu, F. S. 2009. Construction of genetic linkage map of burley tobacco (Nicotiana tabacum L.) and genetic dissection of partial traits. Acta Agronomica Sinica, 35: 1646-1654. 
Chaplin, J. F. 1975. Genetic influence on chemical constituents of tobacco leaf and smoke. Beiträge zur Tabakforschung International, 8: 233-240.
Chen, D. W., Chai, L. G., Cai, C. C., Lin, G. P., Wang, Y. and Xu, F. S. 2009. Construction of genetic linkage map of burley tobacco (Nicotiana tabacum L.) and the QTL analysis of black shank disease. Progress in Natural Science, 19: 852-858.
Chen, S. Y. 1972. Genetic studies of leaf yield and nicotine content in Nicotiana tabacum L. Taiwan Agricultural Quarterly, 8: 124-132.
Dellaporta, S. L., Wood, J. and Hicks, J. B. 1983. A plant DNA minipreparation: version II. Plant Molecular Biology Reporter, 1: 19-21.
Del Piano, L., Abet, M., Sorrentino, C., Acanfora, F., Cozzolino, E. and Dimuro, A. 2000. Genetic variability in Nicotiana tabacum and Nicotiana species as revealed by RAPD procedure. International Tobacco Control Research, 19: 1-15.
Ek, M., Eklund, R., Ven Post, R., Dayteg, C., Henriksson, T., Weibull, P., Ceplitis, A., Isaak, P. and Tuvesson, S. 2005. Microsatellite markers for powdery mildew resistance in pea (Pisum sativum L.). Hereditas, 142: 86-91.
Givry, S.D., Bouchez, M., Chabrier, P., Milan, D. and Schiex, T. 2005. Carthagene: multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics, 21: 1703-1704.
Hatami Maleki, H., Karimzadeh, G., Darvishzadeh, R. and Sarrafi, A. 2011. Correlation and sequential path analysis of some agronomic traits in tobacco (Nicotiana tabacum L.) to improve dry leaf yield. Australian Journal of Crop Science, 5: 1644-1648.
Hatami Maleki, H., Karimzadeh, G., Darvishzadeh, R. and Alavi, R. 2012. Genetic variation of oriental tobaccos using multivariate analysis. Iranian Journal of Field Crops Research, 10: 100-106.
Honarnejad, R. and Shoaai Deilami, M. 2004. Gene effect, combining ability and correlation of characteristics in F2 populations of Burley tobacco. Journal of Science and Technology of Agriculture and Natural Resources, 8: 135-147.
Julio, E., Denoyes-Rothan, B., Verrier, J. L. and Dorlhac de borne, F. 2006a. Detection of QTLs linked to leaf and smoke properties in Nicotiana tabacum based on a study of 114 recombinant inbred lines. Molecular Breeding, 18: 69-91. 
Julio, E., Verrier, J. L. and de Borne, F. D. 2006b. Development of SCAR markers linked to three disease resistances based on AFLP within Nicotiana tabacum L. Theoretical and Applied Genetics, 112: 335-346.
Kato, K., Miura, H. and Sawada, H. 2000. Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theoretical and Applied Genetics, 101: 1114-1121. 
Lefebvre, V., Palloix, A., Caranta, C. and Pochard, R. 1995. Construction of an intraspecific integrated linkage map of pepper using molecular markers and double haploid progenies. Genome, 38: 112-121.
Li, H .L., Chen, M. X., Zhou, D. X., Chen, S. H., Tao, A. F., Li, Y. K., Ma, H. B., Qi, J.M. and Guo, Y.C. 2011. QTL Analysis of six important traits in tobacco (Nicotiana tabacum L.). Acta Agronomica Sinica. 37: 1577-1584.
Liu, B.H. 1998. Statistical Genomics; Linkage, mapping and QTL analysis. CRC Press. 648 Pp
Lin, T. Y., Kao, Y. Y., Lin, R. F., Chen, C. M., Huang, C. H., Wang, C. K., Lin, Y. Z. and Chen, C. C. 2001. A genetic linkage map of Nicotiana plumbaginifolia / Nicotiana longiflora based on RFLP and RAPD markers. Theoretical and Applied Genetics, 103: 905-911.
Ma, H. B., Qi, J. M., Li, Y. K., Liang, J. X., Wang, T., Lan, T., Chen, S. H., Tao, A. F., Lin, L. H. and Wu, J. M. 2008. Construction of a molecular genetic linkage map of tobacco based on SRAP and ISSR markers. Acta Agronomica Sinica, 34: 1958-1963.
Mohammadi, M., Talei, A., Zinali, H., Naghavi, M. R. and Bayvm, M. 2008. Mapping QTLs controlling drought tolerance in barley doubled haploid population. Seed and Plant Journal, 24: 1-15.
Mohsenzadeh-Golfazani, M., Aalami, A., Samizadeh, H. A., Shoaei-Daylami, M. and Talesh-Sasani, S. 2012.  Study of relationship between yield and yield components in tobacco genotype using path analysis method. Journal of Crop Breeding, 9: 27-39.
Moon, H. S., Nicholson, J.S. and Lewis, R. S. 2008. Use of transferable Nicotiana tabacum L. microsatellite markers for investigating genetic diversity in the genus Nicotiana. Genome, 51: 547-559.
Moon, H. S., Nicholson, J. S., Heineman, A., Lion, K., der Hoeven, R. V., Hayes, A. J. and Lewis, R. S. 2009a. Changes in genetic diversity of US. flue-cured tobacco germplasm over seven decades of cultivar development. Crop Science, 49: 498-506.
Moon, H. S., Nifong, J. M., Nicholson, J. S., Heineman, A., Lion, K., der Hoeven, R. V., Hayes, A. J. and Lewis, R. S. 2009b. Microsatellite based analysis of tobacco (Nicotiana tabacum L.) genetic resources. Crop Science, 49: 2149-2157.
Morgante, M. and Olivieri, A.M. 1993. PCR amplified microsatellites as markers in plant genetics. Plant Journal,3: 175-182.
Movafegh, S., Rabiee, B., Zare-Feizabadi, A. and Taheri, G. 2009. Mapping QTLs controlling yield in two Iranian rice cultivars-F2 populations. Iranian Journal of Agricultural Research, 7: 673-683.
Nagarajan, K. and Prasadrao, J. A. V. 2004. Textbook of Field Crops Production. Published by Directorate of Information and Publication of Agriculture Indian Council of Agricultural Research Krishi Anusandh Bhavan. Pusa New Delhi, India, 769-812 Pp.
Narayan, R. K. 1987. Nuclear DNA changes, genome differentiation and evolution in Nicotiana (Solanaceae). Plant Systematics and Evolution, 157: 161-180.
Raju, K. S., Madhav, M. S., Sharma, R. K., Murthy, T. G. K. and Mohapatra, T. 2008. Genetic polymorphism of Indian tobacco types as revealed by amplified fragment length polymorphism. Current Science, 94: 633-638.
Ren, N., and Timko, M. P. 2001. ALFP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome, 44: 559-571.
Rossi, L., Bindler, G., Pijnenburg, H., Isaac, P. G., Henri, I. G., Mahe, M., Orvain, C. and Gadani, F. 2001. Potential of molecular marker analysis for variety identification in processed tobacco. Plant Varieties and Seeds, 14: 89-101.
Tanksley, S. D., Ganal, M. W., Prince, J. P., Vicente, M. C., Bonierbale, M. W., Broun, P., Fulton, T. M., Giovannoni, J.J., Grandillo, S., Martin, G. B., Messeguer, R., Miller, J. C., Miller, L., Paterson, A. H.,  Pineda, O., Roder, M. S., Wing, R. A., Wu, W. and Young, N. D. 1992. High-density molecular linkage maps of the tomato and potato genomes. Genetics, 132: 1141-1160.
Tanksley, S. D., Young, N.D., Paterson, A. H. and Bonierbale, M. W. 1989. RFLP mapping in plant breeding: new tools for an old science. Nature Biotechnology, 7: 257-264.
Tong, Z., Jiao, T., Wang, F., Li, M., Leng, X., Gao, Y., Li, Y., Xiao, B. and Wu, W. 2012. Mapping of quantitative trait loci conferring resistance to brown spot in flue-cured tobacco (Nicotiana tabacum L.). Plant Breeding, 131: 335–339.
Torrecilla, G. G., Del, C. L. B. and Pino, L. A. 2002. Correlation in quantitative variable of black type tobacco. Cuba  Tobacco, 32: 29-36.
Vontimitta, V. and Lewis, R.S. 2010. Mapping of quantitative trait loci affecting resistance to Phytophthora nicotianae in tobacco (Nicotiana tabacum L.) line Beihart-1000. Molecular Breeding, 58: 294-300.
Vos, P., Hogers, R., Bleeker, M., Van, d., Lee. T., Hormes, M., Fritjer, A., Pot, J., Peleman, J., Kuiper, M. and Zabeau, M. 1995. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research, 23: 4407-4414.
Williams J. G. K., Kubelic, A. R., Livak, K. J., Rafalski, J. A. and Tingey, S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18: 6531-6535.
Xiao, B.G., Xu, Z. L., Chen, X. J., Shen, A.r., Li, Y. P. and Zhu, J. 2006. Genetic linkage map constructed by using a HD population for the flue-cured tobacco. Acta Tabacaria Sinica, 12: 35-40.
Xiao, B. G., Lu, X. P., Jiao, F.C., Li, Y. P., Sun, Y. H. and Guo, Z. K. 2008. Preliminary QTL analysis of several chemical components in flue-cured tobacco (Nicotiana tabacum L.). Acta Agronomica Sinica, 34: 1762-1769. 
Yang, B.C., Xiao, B.G., Chen, X.J. and Shi, C.H. 2007. Assessing the genetic diversity of tobacco germplasm using inter simple sequence repeat and inter-retrotransposon amplification polymorphism markers. Annals of Applied Biology, 150: 393-401.
Zamani, P. 2010. Agronomy and curing of tobacco. Iranian Tobacco Company Press, 164 Pp.
Zeng, Z. B. 1993. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proceedings of the National Academy of Sciences, 90: 10972-10976.
Zeng, Z. B. 1994. Precision mapping of quantitative trait loci. Genetics, 136: 1457-1468. 
Zietkiewicz, E., Rafalsik, A. and Labuda, S. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomes, 20: 176-183.
Zhang, H. Y., Liu, X. Z., Wei, L., Zhou, L. Y. and Yang, Y.M. 2007. Insect-resistant transgenic tobacco plants containing both Bt and GNA genes. Plant Biology, 51: 746-748.