الگوی توزیع و چندشکلی ادغامی رتروترنسپوزون‌ها در جمعیت‌های Linum austriacum L.

نوع مقاله: علمی - پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد اصلاح نباتات، گروه اصلاح و بیوتکنولوژی گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه

2 دانشیار گروه اصلاح و بیوتکنولوژی گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه

چکیده

رتروترنسپوزون­ها عناصر رایج در ژنوم گیاهان می­باشند که فراوانی، فعالیت و توزیع یکنواخت آنها در ژنوم، استفاده از آنها را به عنوان نشانگرهای مولکولی ایده­آل می­سازد. به­منظور مطالعه فعالیت، الگوی توزیع و چندشکلی ادغامی برخی رتروترنسپوزون­های LTR (Long terminal repeat) در گیاه Linum austriacum L. از نشانگرهای IRAP (Inter-retrotransposon amplified polymorphism) و REMAP (Retrotransposon-microsatellite amplified polymorphism) استفاده شد. نتایج نشان داد که رتروترنسپوزون­های LTR مورد استفاده به لحاظ انتقالی در ژنوم L. austriacum فعال بوده و در داخل یکدیگر به حالت آشیانه­ای و همچنین در نواحی نزدیک ریزماهواره­ها ادغام می­شوند. از 58 آغازگر منفرد و ترکیب آغازگری بررسی شده، 20 آغازگر (7 آغازگر IRAP و 13 آغازگر REMAP) الگوی باندی واضح و قابل امتیازدهی تولید نمودند. در مجموع 199 مکان توسط 20 آغازگر تکثیر شد که از این تعداد 129 مکان (8/64 درصد) چندشکل بودند. آغازگرهای LTR1868 و LTR1854-A13 به ترتیب بیشترین و کمترین تعداد مکان چندشکل را تولید نمودند. براساس آزمون مانتل همبستگی بین ماتریس­های کوفنتیک IRAP و REMAP معنی­دار نبود. تجزیه خوشه­ای براساس داده‌های حاصل از ترکیب دو نشانگر (IRAP+REMAP) به روش Minimum evolution بر پایه ضریب Number of differences، ژنوتیپ­ها را به چهار گروه منتسب کرد. افراد مربوط به هر جمعیت در گروه­های مشابه قرار گرفت. براساس نتایج حاصل از این تحقیق می­توان اظهار داشت که نشانگرهای IRAP و REMAP توسعه یافته براساس رتروترنسپوزون­های فعال در جنس Linum می­توانند به‌عنوان ابزار نسبتاً جدیدی در برنامه­های اصلاحی گونه­های مختلف این جنس مورد استفاده قرار گیرند.

کلیدواژه‌ها


عنوان مقاله [English]

Distribution Pattern and Insertional Polymorphism of Retrotransposons in Linum austriacum L. Populations

نویسندگان [English]

  • Hossein Abbasi Holasou 1
  • Babak Abdollahi Mandoulakani 2
  • Morad Jafari 2
  • Iraj Bernousi 2
1 M.Sc. Student of Plant Breeding, Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University, Urmia
2 Associate professor, Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University, Urmia
چکیده [English]

Retrotransposons are current component of plants genomes. Their frequency, activity and even distribution thorough plant genomes make them useful as molecular markers. IRAP (Inter-retrotransposon amplified polymorphism) and REMAP (Retrotransposon-microsatellite amplified polymorphism) markers were used to study the activity, distribution and insertional polymophism of some LTR retrotransposons in Linum austriacum. The results showed that LTR retrotransposons used, are trsnspositionally active in L. austriacum genome and they are inserted near each other and in proximity of microsatellite regions as well. Out of 58 primers tested, 20 primers (7 IRAP and 13 REMAP) produced discernible and scorable banding patterns. In total, 199 loci were amplified by using 20 primers, of them 129 were polymorphic. The maximum and minimum number of polymorphic loci was amplified by primers LTR1868 and LTR1854-A13, respectively. The minimum and maximum Nei genetic distances based on IRAP, REMAP and IRAP+REMAP markers was observed between Urmia-Silvana and Khoy and Urmia-Sero and Urmia-Silvana populations, respectively. Mantel test between IRAP and REMAP cophenetic matrices evidenced no significant correlation. IRAP+REMAP-based cluster analysis using Minimum evolution method and Number of differences coefficients assigned individuals to four groups. The results make conclusion that IRAP and REMAP markers developed based on Linum active retrotransposons could be used as new tools in Linum breeding programs. 

کلیدواژه‌ها [English]

  • Retrotransposons
  • Linum austriacum
  • Genetic diversity
  • IRAP and REMAP markers
Abdollahi Mandoulakani, B., Yaniv, E., Kalendar, R., Raats, D., Bariana, H. S., Bihamta, M. R. and Schulman, A. H. 2014. Development of IRAP- and REMAP- derived SCAR markers for marker-assisted selection of the stripe rust resistance gene Yr15 derived from wild emmer wheat. Theoretical and Applied Genetics. (Accepted).

Abdollahi Mandoulakani, B., Piri, Y., Darvishzadeh, R., Bernoosi, I. and Jafari, M. 2012. Retroelement insertional polymorphism and genetic diversity in Medicago sativa populations revealed by IRAP and REMAP markers. Plant Molecular Biology, 30: 286-296.

Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., Struhl, K., Biswas, M. K., Xu, Q. and Deng, X. 2010. Utility of RAPD, ISSR, IRAP and REMAP markers for the genetic analysis of Citrus spp. Scientia Horticulturae, 124: 254-261.

Biswas, M. K., Xu, Q. and Deng, X. 2010. Utility of RAPD, ISSR, IRAP and REMAP markers for the genetic analysis of Citrus spp. Scientia Horticulturae, 124: 254-261.

Carvalho, A., Guedes-Pinto, H., Martins-Lopes, P. and Lima-Brito, J. 2010. Genetic variability of old Portuguese bread wheat cultivars assayed by IRAP and REMAP markers. Annals of Applied Biology, 3: 337-345.

Diederichen, A. and Fu, Y. B. 2008. Flax genetic diversity as the raw material for future success, Genetic Resources and Crop Evolution, 53: 77-90.

Flavell, R. B. 1986. Repetitive DNA and chromosome evolution in plants. Philosophical Trans Research Society London Series Biological Science, 312: 227-242.

Flavell, A. J., Dunbar, E., Anderson, R., Pearce, S. R., Hartley, R. and Kumar, A. 1992. Ty1-copia group retrotransposons are ubiquitous and eterogeneous in higher plants. Nucleic Acids Research, 20: 3639-3644.

Flavell, A. J., Knox, M. R., Pearce, S. R. and Ellis, T. H. N. 1998. Retrotransposon- based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant Journal, 16: 643-650.

Fu, Y. B. 2005. Geographic patterns of RAPD variation in cultivated flax. Crop Science, 45: 1084-1091.

Guo, D., Zhang, H. and Luo, Z. 2006. Genetic relationships of Diospyros kaki Thunb. and related species revealed by IRAP and REMAP analysis. Plant Science, 170: 528-533.

Kalendar, R., Grob, T., Regina, M., Souniemi, A. and Schulman, A. H. 1999. IRAP and REMAP: Two new retrotransposon-based DNA fingerprinting techniques. Theoretical and Applied Genetics, 98: 704-711.

Kumar, J. and Kumar Gupta, P. 2008. Molecular approaches for improvement of medicinal and aromatic plants. Plant Biotechnology Reports Journal, 2: 93-112.

Li, J. J., Pei, G. L., Pang, H. X., Bilderbeck, A., Chen, S. S. and Tao, S. H. 2006. A new method for RAPD primers selection based on primers bias in nucleotide sequence data. Journal of Biotechnology, 126: 415-423.

Melnikova, N. V., Kudryavtseva, A. V., Zelenin, A. V., Lakunina, V. A., Yurkevich, O. Y., Speranskaya, A. N., Dmitriev, A. A., Krinitsina, A. A., Belenikim, M. S., Uroshlev, L. A., Snezhkina, A. V., Sadritdinova, A. F., Koroban, N. V., Amosova, A. V., Samatadze, T. E., Guzenko, E. V., Lemesh, V. A., Savilova, A. M., Rachinskaia, O. A., Kishlyan, N. V., Rozhmina, T. A., Bolsheva, N. L. and Muravenko, O. V. 2014. Retrotransposon-based molecular markers for analysis of genetic diversity within the genus Linum. BioMed Research International, 231589-14.

Muravenko, O. V., Lemesh, V. A., Samatadze, T. E., Amosova, A. V., Grushetskaya, Z. E., Popov, K. V., Semenova, O. Y., Khotyuleva, L. V. and Zelenin, A. V. 2003. Genome comparisons with chromosomal and molecular markers for three closely related flax species and their hybrids. Russian Journal of Genetics, 39: 414-421.

Murre, M., 1955. Vezelvas. Uitgeverij Ceres. Meppel. The Netherlands: 112 pp.

Nasri, S. H., Abdollahi Mandoulakani, B., Darvishzadeh, R. and Bernoosi, I. 2013. Retrotransposon insertional polymorphism in Iranian bread wheat cultivares and breeding lines revealed by IRAP and REMAP markers. Biochemical Genetics, 51: 927-943.

Omidbaig, R., 2000. Production and processing of medicinal plants. Vol. 3 Astan Quds Publication. Tehran, pp: 1: 397.

Pank, F. 2006. Adaptation of medicinal and aromatic plants to contemporary quality and technological demands by breeding: aims, methods and trends. Revista Brasileira de Plantas Medicinais. Botucatu, 8: 39-42.

Paterson, A. H., Bowers, J. E. and Bruggmann, R. 2009. The Sorghum bicolor genome and the diversification of grasses. Nature, 457: 551-556.

Peakall, R. and Smouse, P. E. 2006. GenAlEx 6: Genetic Analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6: 288-295.

Raney, J. P. and Diederichsen, A. 2002. Oil content and composition of the Flax germplasm collection held by plant gene resources of canada. Agriculture and Agri-food Canada, Saskatoon research center, Canada, 321p.

Rechinger, K. H. 1974. Flora Iranica. No: 106, Akademische Druk, Verlagsanstalt, Graz-Austria. pp: 1-3.

Rohlf, F. J. 2000. NTSYS-pc: numerical taxonomy and multivariate analysis system, version 2. 1. Exeter Software, New York.

Schulman, A. H., Flavell, A. J. and Ellis, T. H. N. 2004. The application of LTR retrotransposons as molecular markers in plants. Methods in Molecular Biology, 260: 145-173.

Sharma, K. K., Crouch, J. H. and Hash, C. T. 2002. Application of biotechnology for crop improvement: prospect and constraints. Journal of Plant Science, 163 (3): 381-395.

Sheidai, M., Afshar, F., Keshavarzi, M., Talebi, S. M., Noormohammadi, Z. and Shafaf, T. 2014. Genetic diversity and genome size variability in Linum austriacum (Linaceae) populations. Biochemical Systematics and Ecology, 57: 20-26.

Shokrpour, M., Mohammadi, S. A., Moghaddam, M., Ziai, S. A. and Javanshir, A. 2008. Analysis of morphologic association, phytochemical and AFLP markers in milk thistle (Silybum marianum L.). Iranian Journal of Medicinal and Aromatic Plants, 24 (3): 278-292.

Smykal, P., Bacova-Kerteszova, N., Kalendar, R., Corander, J., Schlman, A. H. and Pavelek, M. 2011. Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theoretical and Applied Genetics, 122: 1385-1397.

Tamura, K., Dudley, J., Nei, M., Kumar, S. and Kumar, S. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24: 1596-1599.

Uysal, H., Fu, Y. B. and Kurt, O. 2010. Genetic diversity of cultivated flax (Linum usitatissimum L.) and its wild progenitor pale flax (Linum bienne Mill.) as revealed by ISSR marker. Genetic Resources and Crop Evolution, 57: 1109-111.

Van Treuren, R., van Soest, L. J. M. and van Hintum, T. J. L. 2001. Marker-assisted rationalization of genetic resource collections: a case study in flax using AFLPs. Theoretical and Applied Genetics, 103: 144-152.

Vicient, C. M., Kalendar, R. and Schulman, A. H. 2005. Variability, recombination and mosaic evolution of the barley BARE-1 retrotransposon. Journal of Molecular Evolution, 61: 275-91.

Waugh, R., McLean, K., Flavell, A. J., Pearce, S. R., Kumar, A., Thomas, B. B. T. and Powell, W. 1997. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequences-specific amplification polymorphisms (S-SAP). Molecular and General Genetics, 253: 687-694.

Wright, S. 1951. The genetical structure of populations. Annals of Eugenics, 15: 323-354.