شناسایی نشانگر(های) RAPD پیوسته به ژن(های) کنترل کننده زمان گلدهی در جمعیت 1F بادام حاصل از تلاقی کنترل شده (♂) تونو × (♀) شاهرود 12

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار گروه علوم باغبانی و فضای سبز دانشکده کشاورزی دانشگاه ملایر، ملایر

2 دانشیار گروه علوم باغبانی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

3 استاد گروه علوم باغبانی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

4 دانشیار بخش باغبانی،موسسه اصلاح، تهیه نهال و بذر کرج

چکیده

در این تحقیق زمان گلدهی و برخی صفات مورفولوژیکی به­مدت دو سال در جمعیت 1F شامل 72 نتاج حاصل از تلاقی رقم­های ’تونو ‘(میان گل) و ’شاهرود 12 ‘دیرگل مورد ارزیابی قرار گرفت. در این تحقیق برای شناسایی نشانگرهای همبسته با ژن زمان گلدهی، از روش تجزیه تفرق توده­ای با استفاده از 150 آغازگر RAPD در توده انتخاب شده و نهایتاً کل جمعیت مورد بررسی، استفاده شد. نتایج تأیید کرد که توارث زمان گلدهی در نتاج ارزیابی شده به­صورت کمی می­باشد. زمان گلدهی در نتایج محدوده وسیعی را نسبت به والدین نشان دادند، هرچند که برخی از نتاج زودتر از والد میان گل ’تونو‘ به گل رفتند. نتایج نشان داد که نشانگرهای BA-17600,1000،BC-05320 ،BC-06800 ، BC-141750، BC-17600،BC-20250 ، OPC-05850 و OPC-09700,1100 با دیرگلدهی و BA-04720، BB-10630، BC-092000، BD-12510 و OPC-12350 با زودگلدهی در ارتباط بودند. پس از تهیه نقشه ژنتیکی جمعیت مورد بررسی، تجزیه QTL برای زمان گلدهی انجام شد. نتایج نشان داد که آغازگر BA-17به­میزان 4 سانتی­مورگان با یکی از مکان­های ژنی کنترل­کننده دیرگلدهی فاصله دارد. همچنین آغازگرهای OPC-09 و BA-04 به­ترتیب در فاصله 2 و 3 سانتی­مورگان از یکی از ژن­های کنترل­کننده دیرگلدهی و زودگلدهی قرار گرفتند. نشانگرهای ژنتیکی پیوسته با زمان گلدهی در بادام بسیار مهم می­باشد چرا که استفاده از این نشانگرها در جهت انتخاب مستقیم برای شناسایی واریته­های مناسب از نظر زمان گلدهی از بین ژنوتیپ­های زودگل موجب صرفه­جویی در زمان و هزینه می­گردد. 

کلیدواژه‌ها


عنوان مقاله [English]

Identification of RAPD Marker(s) Linked to the Gene (s) Controlling Flowering Time in F1 (♀) Almond Population from Controlled Crosses of ‘Tuono’ (♂) × ‘Shahrood-12’

نویسندگان [English]

  • mousa rasouli 1
  • mohammad reza fatahi moghadam 2
  • zabih allah zamani 3
  • ali imani 4
  • ali ebadi 3
چکیده [English]

In this study flowering time and some morphological traits were evaluated during two years in a F1 almond progeny of seventy two seedlings from the cross between ‘Tuono’ )intermediate flowering(and ‘Shahrood-12’)late flowering( cultivars. Modified-bulk segregant analysis with the application of the 155 RAPD primers, spanning the whole almond genome were used to identify molecular markers linked to flowering time in several selected descendants from the studied almond progeny. Results showed a quantitative inheritance of this trait in the progeny and then to all 72 progenies. The seedlings evaluated showed a wide range of flowering time between both progenitors and some of these descendants were earlier than the intermediate flowering progenitor ‘Tuono’. The results showed that BA-17600,1000, BC-05320, BC-06800, BC-141750, BC-17600, BC-20250, OPC-05850 and OPC-09700 markers were linked to late blooming and BA-04720,BB-10630,BC-092000,BD-12510andOPC-12350 were linked to early blooming time. After construction of the genetic map of population, QTL analysis was performed for flowering time. The results showed that BA-17 primer had 4 cM distance from one of the late flowering time loci. Also,the OPC-09 and BA-04 primers were located at 2 and 3 cM distances from one of the genes controlling early and late flowering time, respectively.Identification of genetic markers linked to blooming time in almond are very important, because utilization of these markers will help the indirect selection of genotypes for desirable bloom time in early generation to saving time and effort. According to the obtained results, with the development of these markers, the strategies of marker assisted selection can be used in breeding programs of almond, apricot, peach and other Prunus species. 

کلیدواژه‌ها [English]

  • Prunus dulcis
  • Flowering time
  • Genetic mapping
  • QTL
  • BSA
  • Marker-assisted selection
Alburquerque, N., García-Montiel, F., Carrillo, A. and Burgos, L. 2008. Chilling and heat requirements of sweet cherry cultivars and the relationship between altitude and the probability of satisfying the chill requirements. Environmental and Experimental Botany, 64: 162-170.
Anderson, J. L. and Seeley, S. D. 1993. Bloom delay in deciduous fruits. Horticultural Reviews, 15: 97-144.
Aranzana, M. J., Cosson, P., Dirlewanger, E., Ascasibar, J., Cipriani, G., Arús, P., Testolin, R., Abbott A., King, G. J. and Iezzoni, A.F. 2003. A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theoretical and Applied Genetics, 106: 819-825.
Arús, P. and Moreno-González J. 1993. Marker-assisted selection. InHayward MD, Bosemark NO, Romagosa I (eds) Plant breeding. Principles and prospects. Chapman and Hall, London, pp: 314-331.
Asins, M. J., Mestre, P., García, J. E., Dicenta, F. and Carbonell, E. A. 1994. Genotype x environment interaction in QTL analysis of an intervarietal almond cross by means of genetic markers. Theoretical and Applied Genetics, 89: 358-364.
Ballester, J. R., Company, S. I., Arus, P. and Vicente, M. C. 2001. Genetic mapping of a major gene delaying blooming time in almond. Plant Breeding, 120: 268-270.
Campoy, J. A., Martínez-Gómez, P., Ruiz, D., Rees, J. and Celton, J. M. 2010. Developing microsatellite multiplex and megaplex PCR systems for high throughput characterization of breeding progenies and linkage maps spanning the apricot genome. Plant Molecular Biology Reporter, 28: 560-568.
Campoy, J. A., Martínez-Gómez, P., Ruiz, D., Rees, J. and Celton, J. M. 2010. Inheritance of flowering time in apricot (Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat (SSR) Markers. Plant Molecular Biology Reporter, 10: 24-29.
Canli, F. A. (2004). A modified Segregant analysis for late blooming in sour cherry. Pakstan Journal of Biology Sciences, 7: 1684-1688.
Chen, F. Q., Prehn, D. and Hayes, P. M. 1994. Mapping genes for resistance to barley stripe rust. Theoretical and Applied Genetics, 88: 215-219.
Cipriani, G., Lot, G., Huang, W. G., Marrazzo, M. T., Peterlunger, E. and Testolin, R. 1999. AC/GT and AG/CT microsatellites repeats in peach (Prunus persica L. Batsch): isolation, characterization and cross-species amplification in Prunus. Theoretical and Applied Genetics, 100: 713-722.
Decousset, L., Griffiths, S., Dunford, R. P., Pratchett, N. and Laurie, D. A. 2000. Development of STS markers closely linked to the Ppd-H1 photoperiod response gene of barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 101 : 1202-1206.
Dicenta, F., Garcia, J. E. and Carbonell, E. 1993a. Heritability of flowering, productivity and maturity in almond. Journal of Horticulture. Science, 68: 113-120.
Dirlewanger, E., Crosson, A., Tavaud, P., Aranzana, M. J., Poizat, C., Zanetto, A., Arús, P. and Laigret, L. 2002. Development of microsatellite markers in peach and their use in genetic diversity analysis in peach and sweet cherry. Theoretical and Applied Genetics, 105: 127-138.
Dirlewanger, E., Graziano, E., Joobeur, T., Garriga-Caldré, F., Cosson, P., Howad, W. and Arús, P. 2004. Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proceedings of the National Academy of Sciences, USA 101: 9891-9896.
Dong, N. V., Subudhi, P. K., Luong, P. N., Quang,V. D., Quy, T. D., Zheng, H. G., Wang, B. and Nguyen, H. T. 2000. Molecular mapping of a rice gene conditioning thermosensitive genetic male sterility using AFLP, RFLP and SSR techniques. Theoretical and Applied Genetics, 100: 727-734.
Grassely, C. 1978. Observations sur l’utilisation d’un mutant d’amandier a´ floraison tardive dans un programme d’hybridation. Annal Amelior Plant, 28: 685-695.
Joobeur, T., Viruel, M. A., De-Vicente, M. C., Jáuregui, B., Ballester, J., Dettori, M. T., Verde, I., Truco, M. J., Messeguer, R., Battle, I., Quarta, R., Dirlewanger, E. and Arús, P. 1998. Construction of a saturated linkage map for Prunus using an almond × peach F2 progeny. Theoretical and Applied Genetics, 97: 1034-1041.
Kester, D. E. 1965. Inheritance of time of bloom in certain progenies of almond. The American Society for Horticultural Science, 87: 214-221.
Kester, D. E. and Gradiziel, T. M. 1996. Almonds, in: Janick, J., Moore, J. N. (Eds.), Fruit Breeding. Vol. 3. Nuts, John Wiley and Sons, New York, pp: 1-97.
Lander, E. S., Green, P., Abrahamson, J., Barlow, A., Daly, M. J., Lincoln, S. E. and Newburg, L. 1987. Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1: 174-181.
Lander, E. S. and Botstein, D. 1989. Mapping Mendelian factor underlying quantitative traits using RFLP linkage maps.Genetics, 121: 185-199.
Michelmore, R., Paran, W. I. and Kesseli, R. V. 1991. Identification of markers linked to disease-resistance gene by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregation populations.Proceedings of the National Academy of Sciences, 88: 9828-9832.
Miklas, P. N., Johnson, E., Stone, V., Beaver, J. S., Montoya, C. and Zapata, M. 1996. Selective mapping of QTL conditioning disease resistance in common bean. Crop Science, 36: 1344-1351.
Sanchez-Perez, R., Dicenta, F., Gradziel, T. M., Arus, P.  and Martinez-Gomez, P. 2004. Application of molecular markers in almond breeding programmes. Nucis-Newsletter, 12: 9-12.
Sánchez-Pérez, R., Howad, W., Dicenta, F., Arús, P. and Martínez-Gómez, P. 2007. Mapping major genes and quantitative trait loci control-ling agronomic traits in almond. Plant Breeding, 126: 310-318.
Silva, C., Garcia-Mas, J., Sánchez, A. M., Arús, P. and Oliveira, M. M. 2005. Looking into flowering time in almond (Prunus dulcis (Mill) D. A. Webb): the candidate gene approach. Theoretical and Applied Genetics, 110:959-968.
Tabuenca, M. C. 1972. Necessidades de frı´o invernal en almendro. An Estac Esper Aula Dei, 11: 325-329.
Van Ooijen, J. W. and Voorrips, R. E. 2001. JoinMap 3.0, software for the calculation of genetic linkage maps. Plant Research International B_V, Wageningen.
Vision, T. J., Brown, D. G., Shmoys, D. B., Durret, R. T. and Tanksley, S. D. 2000. Selective mapping: a st rategy for optimizing the construction of high-density linkage maps. Genetics, 155: 407-420.
Yu, G. X. and Wise, R. P. (2000). An anchored AFLP and retrotransposon-based map of diploid Avena. Genome, 43: 736-749.