Ahn, Y. O., Zheng, M., Bevan, D. R., Esen, A., Shiu, S. H., Benson, J., Peng, H. P., Miller, J. T., Cheng, L. I., Poulton, J. E. and Shih, M. C. 2007. Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 35. Phytochemistry, 68:1510-1520.
Bannai, H., Tamada, Y., Maruyama, O., Nakai, K. and Miyano, S. 2002. Extensive feature detection of N-terminal protein sorting signals. Bioinformatics, 18: 298-305.
Bendtsen, J. D., Nielsen, H., Von Heijne, G. and Brunak, S. 2004. Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology, 340: 783-795.
Birnboim, H. C. and Doly, J. 1979. A rapid alkaline procedure for screening recombinant plasmid DNA. Nucleic Acid Research,7: 1513-1525.
Bogan, A. A. and Thorn, K. S. 1998. Anatomy of hot spots in protein interfaces. Journal of Molecular Biology, 280: 1-9.
Bombarely, A., Menda, N., Tecle, I. Y., Buels, R. M., Strickler, S., Fischer-York, T., Pujar, A., Leto, J., Gosselin, J. and Mueller, L. A. 2011. The sol genomics network (solgenomics.net): growing tomatoes using Perl. Nucleic Acids Research, 39: 1149-1155.
Brummell, D. A. and Harpster, M. H. 2001. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Molecular Biology, 47: 311-340.
Carey, A. T., Holt, K., Picard, S., Wilde, R., Tucker, G. A., Bird, C. R., Shuch, W. and Seymour, G. B. 1995. Tomato exo-(1→4)–β-D-galactanase. Isolation, changes during ripening in normal and mutant tomato fruit and characterisation of a related cDNA clone. Plant Physiology, 108: 1099-1107.
Carey, A. T., Smith, D. L., Harrison, E., Bird, C. R., Gross, K. C., Seymour, G. B. and Tucker, G. A. 2001. Down-regulation of a ripening-related b-galactosidase gene (TBG1) in transgenic tomato fruits. Journal of Experimental Botany, 52: 663-668.
Clackson, T. and Wells, J. A. 1995. A hot spot of binding energy in a hormone-receptor interface. Science, 267: 383-386.
De Alcantara, P. H. N., Dietrich, S. M. C. and Buckeridge, M. S. 1999. Xyloglucan mobilization and purification of a (XLLG/XLXG) specific β-galactosidase from cotyledons of Copaifera langsdorffii. Plant Physiology and Biochemistry, 37: 653-663.
De Alcantara, P. H. N., Martim, L., Silva, C. O., Dietrich, S. M. C. and Buckeridge, M. S. 2006. Purification of a β-galactosidase from cotyledons of Hymenaea courbaril L. (Leguminosae). Enzyme properties and biological function. Plant Physiology and Biochemistry, 44: 619-627.
De Castro, E., Sigrist, C. J. A., Gattiker, A., Bulliard, V., Langendijk-Genevaux, P. S., Gasteiger, E., Bairoch, A. and Hulo, N. 2006.ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Research, 34: 362-365.
De Silva, J. and Verhoeyen, M. E. 1998. Production and characterization of antisense-exogalactanase tomatoes. In Kuiper, H. A. (ed.). Report of the demonstration programme on food safety evaluation of genetically modified foods as a basis for market introduction. The Hague, The Netherlands: Ministry of Economic Affairs, pp:99-106.
Demaurex, N. 2002. pH homeostasis of cellular organelles. News in Physiological Sciences, 17: 1-5.
Dwevedi, A., Dubey, V. K., Jagannadham, M. V. and Kayastha, A. M. 2010. Insights into pH-induced conformational transition of β-galactosidase from Pisum sativum leading to its multimerization. Applied Biochemistry and Biotechnology, 162: 2294-2312.
Esteban, R., Dopico, B., Mun˜oz, F. J., Romo, S., Martı´n, I. and Labrador, E. 2003. Cloning of a Cicer arietinum β-galactosidase with pectin degrading function. Plant and Cell Physiology, 44: 718-725.
Esteban, R., Labrador, E. and Dopico, B. 2005. A family of β-galactosidase cDNAs related to development of vegetative tissue in Cicer arietinum. Plant Science, 168: 457-466.
Fasano, J. M., Swanson, S. J., Blancaflor, E. B., Dowd, P. E., Kao, T. H. and Gilroy, S. 2001. Changes in root cap pH are required for the gravity response of the Arabidopsis root. Plant Cell, 13: 907-921.
Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D. and Bairoch, A. 2005. Protein identification and analysis tools on the ExPASy server. In Walker, J. M. (ed.). The proteomics protocols handbook, pp:571-607.
Geourjon, C. and Deleage, G. 1995. SOPMA: Significant improvement in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences, 11: 681-684.
Gogers, H. J., Maund, S. L. and Johnson, L. H. 2001. A β-galactosidase-like gene is expressed during tobacco pollen development. Journal of Experimental Botany, 52: 67-75.
Henrissat, B., Callebaut, I., Fabrega, S., Lehn, P., Mornon, J. P. and Davies, G. 1995. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Procceding of National Academy of Sciences USA, 92: 7090-7094.
Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal, 280: 309-316.
Henrissat, B. and Bairoch, A. 1993. New families in the classification of glycosyl hydrolases based on amino-acid sequence similarities. Biochemical Journal, 293:781-788.
Henrissat, B. 1998. Glycosidase families. Biochemical Society Transactions, 26: 153-156.
Hosono, M., Ishikawa, K., Mineki, R., Murayama, K., Numata, C., Ogawa, Y., Takayanagi, Y. and Nitta, K. 1999.Tandem repeat structure of rhamnose-binding lectin from catfish (Silurus asotus) eggs. Biochimica et Biophysica Acta, 1472: 668-675.
Huber, R. E., Hakda, S., Cheng, C., Cupples, C. G. and Edwards, R. A. 2003. Trp-999 of β-galactosidase is a key residue for binding, catalysis, and synthesis of allolactose, the natural Lac operon inducer. Biochemistry, 42:1796-1803.
Iglesias, N., Abelenda, J. A., Roniño, M., Sampedro, J., Revilla, G. and Zarra, I. 2006. Apoplastic glycosidases active against xyloglucan oligosaccharides of Arabidopsis thaliana. Plant and Cell Physiology, 47: 55-63.
Kardailsky, I. V., Sherrier, D. J. and Brewin, N. J. 1996.Identification of a new pea gene, PsNlec1, encoding a lectinlike glycoprotein isolated from the symbiosomes of root nodules. Plant Physiology,111: 49-60.
Kang, I. K., Suh, S. G., Gross, K. C. and Byoun, J. K. 1994. N-terminal amino acid sequence of persimmon fruit β-galactosidase. Plant Physiology,105: 975-979.
Kishore, D. and Kayastha, A. M. 2012. A β-galactosidase from chick pea (
Cicer arietinum) seeds: Its purification, biochemical properties and industrial applications. Food Chemistry,
134: 1113-1122.
Kotake, T., Dina, S., Konishi, T., Kaneko, S., Igarashi, K., Samejima, M., Watanabe, Y., Kimura, K. and Tsumuraya, Y. 2005. Molecular cloning of a β-galactosidase from radish that specifically hydrolyzes β-(1→3)- and β-(1→6)-galactosyl residues of arabinogalactan protein. Plant Physiology, 138: 1563-1576.
Kyte, J. and Doolittle, R. 1982. A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157:105-132.
Lazan, H., Ng, S. Y., Goh, L. Y. and Ali, Z. M. 2004. Papaya β-galactosidase/galactanase isoforms in differential cell wall hydrolysis and fruit softening during ripening. Plant Physiology and Biochemistry, 42: 847-853.
Martinez-Bilbao, M., Holdsworthz, R. E., Edwardsa, L. A. and Huberl, R. E. 1991. A highly reactive β-galactosidase (Escherichia coli) resulting from a substitution of an aspartic acid for Gly-794. Journal of Biological Chemistry, 266: 4979-4986.
Martinez-Bilbao, M. and Huber, R. E. 1994. Substitutions for Gly-794 show that binding interactions are important determinants of the catalytic action of β-galactosidase (Escherichia coli). Biochemistry and Cell Biology, 72: 313-319.
Macquet, A., Ralet, M. C., Loudet, O., Kronenberger, J., Mouille, G., Marion-Poll, A. and North, H. M. 2007. A naturally occurring mutation in an Arabidopsis accession affects a β-d-galactosidase that increases the hydrophilic potential of rhamnogalacturonan I in seed mucilage. Plant Cell, 19: 3990-4006.
Moctezuma, E., Smith, D. L. and Gross, K. C. 2003. Antisense suppression of a β-galactosidase gene (TBG6) in tomato increases fruit cracking. Journal of Experimental Botany, 54: 2025-2033.
Mwaniki, M. W., Mathooko, F. M., Matsuzaki, M., Hiwasa, K., Tateishi, A., Ushijima, K., Nakano, R., Inaba, A. and Kubo, Y. 2005. Expression characteristics of seven members of the β-galactosidase gene family in ‘La France’ pear (Pyrus communis L.) fruit during growth and their regulation by 1-methylcyclopropene during postharvest ripening. Postharvest Biology and Technology, 36: 253-263.
Ogasawara, S., Abe, K. and Nakajima, T. 2007. Pepper β-galactosidase 1 (PBG1) plays a significant role in fruit ripening in bell pepper (capsicum annuum). Bioscience, Biotechnology and Biochemistry, 71: 309-322.
Ozeki, Y., Matsui, T., Suzuki, M. and Titani, K. 1991. Amino acid sequence and molecular characterization of a β-galactoside-specific lectin purified from sea urchin (Anthocidaris crassispina) eggs. Biochemistry,30:2391-2394.
Parisien, M. and Major, F. 2007. Ranking the factors that contribute to protein β-sheet folding. Proteins: Structure, Function and Bioinformatics, 68: 824-829.
Poch, O., L'hote, H., Dallery, V., Debeaux, F., Fleer, R. and Sodoyer, R. 1992. Sequence of the Kluyveromyces lactis β-galactosidase: comparison with prokaryotic enzymes and secondary structure analysis. Gene, 118: 55-63.
Reiter, W. D. and Vanzin, G. F. 2001. Molecular genetics of nucleotide sugar interconversion pathways in plants. Plant Molecular Biology, 47: 95-113.
Rogers, H. J., Maund, S. L. and Johnson, L. H. 2001. A β-galactosidase-like gene is expressed during tobacco pollen development. Journal of Experimental Botany, 52: 67-75.
Rolin, D., Baldet, P., Just, D., Chevalier, C., Biran, M. and Raymond, P. 2000. NMR study of low subcellular pH during the development of cherry tomato fruit. Australian Journal of Plant Physiology, 27: 61-69.
Rost, B. and Sander, C. 1993. Prediction of protein secondary structure at better than 70% accuracy. Journal of Molecular Biology, 232: 584-99.
Ross, G. S., Wagrzyn, T., MacRae, E. A. and Redgwell, R. J. 1994. Apple β-galactosidase: activity against cell wall polysaccharides and characterization of a related cDNA clone. Plant Physiology, 106: 521-528.
Spiwok, V., Lipovová, P., Skálová, T., Buchtelová, E., Hašek, J. and Králová, B. 2004. Role of CH/π interactions in substrate binding by
Escherichia coli β-galactosidase
. Carbohydrate Research,
339: 2275-2280.
Smith, D. L. and Gross, K. C. 2000. A family of at least seven β-galactosidase genes is expressed during tomato fruit development. Plant Physiology, 123: 1173-1183.
Smith, D. L., Abbott, J. A. and Gross, K.C. 2002. Down-regulation of tomato β-galactosidase 4 results in decreased fruit softening. Plant Physiology, 129: 1-8.
Tanthanuch, W., Chantarangsee, M., Maneesan, J. and Ketudat-Cairns, J. 2008. Genomic and expression analysis of glycosyl hydrolase family 35 genes from rice (Oryza sativa L.).BMC Plant Biology, 8: 84.
Tateishi, A., Inoue, H., Shiba, H. and Yamaki, S. 2001. Molecular cloning of β-galactosidase from Japanese pear (Pyrus pyrifolia) and its gene expression with fruit ripening. Plant and Cell Physiology, 42: 492-498.
Tateishi, A., Shiba, H., Ogihara, J., Isobe, K., Nomura, K., Watanabe, K. and Inoue, H. 2007. Differential expression and ethylene regulation of β-galactosidase genes and isozymes isolated from avocado (Persea americana Mill.) fruit. Postharvest Biology and Technology, 45: 56-65.
Taylor, M. E. and Drickamer, K. 2006. Introduction to Glycobiology (2nd ed.). Oxford University Press, USA.
Tello-Solís, S. R., Jiménez-Guzmán, J., Sarabia-Leos, C., Gómez-Ruíz, L., Cruz-Guerrero, A. E., Rodríguez-Serrano, G. M. and García-Garibay, M. 2005. Determination of the secondary structure ofKluyveromyces lactis β-galactosidase by circular dichroism and its structure-activity relationship as a function of the pH. Journal of Agricultural and Food Chemistry, 53: 10200-10204.
Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22: 4673-4680.
Triantafillidou, D. and Georgatsos, J. G. 2001. Barley β-Galactosidase: Structure, function, heterogeneity, and gene origin. Journal of Protein Chemistry, 20: 551-562.
Varki, A., Cummings, R. D., Esko, J. D., Freeze, H. H., Stanley, P., Bertozzi, C. R., Hart, G. W. and Etzler, M. E. 2009. Essentials of Glycobiology (2nd ed.). Cold Spring Harbor Laboratories Press, Cold Spring Harbor - New York.
Wu, Z. and Burns, J. K. 2004. A β-galactosidase gene is expressed during mature fruit abscission of‘Valencia’ orange. Journal of Experimental Botany, 55: 1483-1490.
Zhang, H. M. and Liu, J. Y. 2005. Molecular cloning and characterization of a β-galactosidase gene expressed preferentially in cotton fibers. Journal of Integrative Plant Biology, 47: 223-232.