همسانه سازی cDNA و بررسی بیان ژن، خصوصیات فیزیک و شیمیایی و ساختارهای عملکردی آنزیم های بتاگالاکتوزیداز در میوه گوجه فرنگی

نوع مقاله: علمی - پژوهشی

نویسندگان

1 کارشناس ارشد گروه بیوتکنولوژی کشاورزی، دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی(ره)، قزوین

2 استادیار بیوتکنولوژی کشاورزی، دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی(ره)، قزوین

چکیده

بتاگالاکتوزیدازها در بسیاری از فرآیندهای مرتبط با رشدونمو گیاه شرکت نموده و به­عنوان آنزیم­های کلیدی در نرمی وابسته به رسیدگی میوه­های گوشتی معرفی شده­اند. در این مطالعه، طول کامل ششcDNA ی رمزکننده آنزیم­های بتاگالاکتوزیداز (نام­گذاری شده STBG2-7) از بافت میوه گوجه­فرنگی رقم فالکاتو (Falcato) همسانه­سازی و سطوح بیان و توالی اسیدآمینه مربوط به آنها بررسی گردیدند. با هم­ردیفی توالی­های پروتئینی منتج از STBG2-7، دو نیمه بسیار حفاظت­شده و کم حفاظت­شده در این آنزیم­ها شناسایی گردیده و براساس خصوصیات نیمه­های کم حفاظت­شده و یافته­های آزمایش­های اخیر پیشنهاد گردید که عملکردهای افتراقی این آیزوفرم­ها مرتبط با این نیمه­های کم حفاظت­شده می­باشند، که این نیمه­های کم حفاظت­شده با زیرواحدهای کوچک بتاگالاکتوزیدازهای هترودایمر متناظر می­باشند و با دو باقیمانده Trp و Glu کاملاً حفاظت­شده آغاز می­گردند.

کلیدواژه‌ها


عنوان مقاله [English]

cDNA Cloning and Investigating Gene Expression, Physicochemical Characteristics and Functional Structures of β-galactosidase Enzymes of Tomato Fruit (Lycopersicum esculentum cv. Falcato)

نویسندگان [English]

  • Alireza ghanad sabzevari 1
  • ramin hoseini 2
چکیده [English]

β-galactosidases participate in many processes related to plant development and are introduced as the key enzymes in the ripening-related softening of fleshy fruits. In this study, six full-length cDNAs encoding β-galactosidase enzymes (called STBG2-7) are cloned from the tomato fruit tissue of Falcato cultivar, and their expression levels and amino acid sequences are investigated. Also, the expression levels and amino acid sequences deduced from these isoforms are compared to their corresponding isoforms in Rutgers cultivar, and differences are studied and discussed. In the follow-up, by alignment of the protein sequences of STBG2-7, two highly-conserved and less-conserved halves are identified in these enzymes, and on the basis of the characteristics of the less-conserved halves and the recent experimental findings, it is suggested that the differential functions of these isoforms are related to these less-conserved halves.
 

کلیدواژه‌ها [English]

  • RT-PCR
  • Semi-quantitative PCR
  • Lectin domain
  • Protein
Ahn, Y. O., Zheng, M., Bevan, D. R., Esen, A., Shiu, S. H., Benson, J., Peng, H. P., Miller, J. T., Cheng, L. I., Poulton, J. E. and Shih, M. C. 2007. Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 35. Phytochemistry, 68:1510-1520.

Bannai, H., Tamada, Y., Maruyama, O., Nakai, K. and Miyano, S. 2002. Extensive feature detection of N-terminal protein sorting signals. Bioinformatics, 18: 298-305.

Bendtsen, J. D., Nielsen, H., Von Heijne, G. and Brunak, S. 2004. Improved prediction of signal peptides: SignalP 3.0.  Journal of Molecular Biology, 340: 783-795.

Birnboim, H. C. and Doly, J. 1979. A rapid alkaline procedure for screening recombinant plasmid DNA. Nucleic Acid Research,7: 1513-1525.

Bogan, A. A. and Thorn, K. S. 1998. Anatomy of hot spots in protein interfaces. Journal of Molecular Biology, 280: 1-9.

Bombarely, A., Menda, N., Tecle, I. Y., Buels, R. M., Strickler, S., Fischer-York, T., Pujar, A., Leto, J., Gosselin, J. and Mueller, L. A. 2011. The sol genomics network (solgenomics.net): growing tomatoes using Perl. Nucleic Acids Research, 39: 1149-1155.

Brummell, D. A. and Harpster, M. H. 2001. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Molecular Biology, 47: 311-340.

Carey, A. T., Holt, K., Picard, S., Wilde, R., Tucker, G. A., Bird, C. R., Shuch, W. and Seymour, G. B. 1995. Tomato exo-(1→4)–β-D-galactanase. Isolation, changes during ripening in normal and mutant tomato fruit and characterisation of a related cDNA clone. Plant Physiology, 108: 1099-1107.

Carey, A. T., Smith, D. L., Harrison, E., Bird, C. R., Gross, K. C., Seymour, G. B. and Tucker, G. A. 2001. Down-regulation of a ripening-related b-galactosidase gene (TBG1) in transgenic tomato fruits. Journal of Experimental Botany, 52: 663-668.

Clackson, T. and Wells, J. A. 1995. A hot spot of binding energy in a hormone-receptor interface. Science, 267: 383-386.

De Alcantara, P. H. N., Dietrich, S. M. C. and Buckeridge, M. S. 1999. Xyloglucan mobilization and purification of a (XLLG/XLXG) specific β-galactosidase from cotyledons of Copaifera langsdorffii. Plant Physiology and Biochemistry, 37: 653-663.

De Alcantara, P. H. N., Martim, L., Silva, C. O., Dietrich, S. M. C. and Buckeridge, M. S. 2006. Purification of a β-galactosidase from cotyledons of Hymenaea courbaril L. (Leguminosae). Enzyme properties and biological function. Plant Physiology and Biochemistry, 44: 619-627.

De Castro, E., Sigrist, C. J. A., Gattiker, A., Bulliard, V., Langendijk-Genevaux, P. S., Gasteiger, E., Bairoch, A. and Hulo, N. 2006.ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Research, 34: 362-365.

De Silva, J. and Verhoeyen, M. E. 1998. Production and characterization of antisense-exogalactanase tomatoes. In Kuiper, H. A. (ed.). Report of the demonstration programme on food safety evaluation of genetically modified foods as a basis for market introduction. The Hague, The Netherlands: Ministry of Economic Affairs, pp:99-106.

Demaurex, N. 2002. pH homeostasis of cellular organelles. News in Physiological Sciences, 17: 1-5.

Dwevedi, A., Dubey, V. K., Jagannadham, M. V. and Kayastha, A. M. 2010. Insights into pH-induced conformational transition of β-galactosidase from Pisum sativum leading to its multimerization. Applied Biochemistry and Biotechnology, 162: 2294-2312.

Esteban, R., Dopico, B., Mun˜oz, F. J., Romo, S., Martı´n, I. and Labrador, E. 2003. Cloning of a Cicer arietinum β-galactosidase with pectin degrading function. Plant and Cell Physiology, 44: 718-725.

Esteban, R., Labrador, E. and Dopico, B. 2005. A family of β-galactosidase cDNAs related to development of vegetative tissue in Cicer arietinum. Plant Science, 168: 457-466.

Fasano, J. M., Swanson, S. J., Blancaflor, E. B., Dowd, P. E., Kao, T. H. and Gilroy, S. 2001. Changes in root cap pH are required for the gravity response of the Arabidopsis root. Plant Cell, 13: 907-921.

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D. and Bairoch, A. 2005. Protein identification and analysis tools on the ExPASy server. In Walker, J. M. (ed.). The proteomics protocols handbook, pp:571-607.

Geourjon, C. and Deleage, G. 1995. SOPMA: Significant improvement in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences, 11: 681-684.

Gogers, H. J., Maund, S. L. and Johnson, L. H. 2001. A β-galactosidase-like gene is expressed during tobacco pollen development. Journal of Experimental Botany, 52: 67-75.

Henrissat, B., Callebaut, I., Fabrega, S., Lehn, P., Mornon, J. P. and Davies, G. 1995. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Procceding of National Academy of Sciences USA, 92: 7090-7094.

Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal, 280: 309-316.

Henrissat, B. and Bairoch, A. 1993. New families in the classification of glycosyl hydrolases based on amino-acid sequence similarities. Biochemical Journal, 293:781-788.

Henrissat, B. 1998. Glycosidase families. Biochemical Society Transactions, 26: 153-156.

Hosono, M., Ishikawa, K., Mineki, R., Murayama, K., Numata, C., Ogawa, Y., Takayanagi, Y. and Nitta, K. 1999.Tandem repeat structure of rhamnose-binding lectin from catfish (Silurus asotus) eggs. Biochimica et Biophysica Acta, 1472: 668-675.

Iglesias, N., Abelenda, J. A., Roniño, M., Sampedro, J., Revilla, G. and Zarra, I. 2006. Apoplastic glycosidases active against xyloglucan oligosaccharides of Arabidopsis thaliana. Plant and Cell Physiology, 47: 55-63.

Kardailsky, I. V., Sherrier, D. J. and Brewin, N. J. 1996.Identification of a new pea gene, PsNlec1, encoding a lectinlike glycoprotein isolated from the symbiosomes of root nodules. Plant Physiology,111: 49-60.

Kang, I. K., Suh, S. G., Gross, K. C. and Byoun, J. K. 1994. N-terminal amino acid sequence of persimmon fruit β-galactosidase. Plant Physiology,105: 975-979.

Kishore, D. and Kayastha, A. M. 2012. A β-galactosidase from chick pea (Cicer arietinum) seeds: Its purification, biochemical properties and industrial applications. Food Chemistry, 134: 1113-1122.

Kotake, T., Dina, S., Konishi, T., Kaneko, S., Igarashi, K., Samejima, M., Watanabe, Y., Kimura, K. and Tsumuraya, Y. 2005. Molecular cloning of a β-galactosidase from radish that specifically hydrolyzes β-(1→3)- and β-(1→6)-galactosyl residues of arabinogalactan protein. Plant Physiology, 138: 1563-1576.

Kyte, J. and Doolittle, R. 1982. A simple method for displaying the hydropathic character of a protein.  Journal of Molecular Biology, 157:105-132.

Lazan, H., Ng, S. Y., Goh, L. Y. and Ali, Z. M. 2004. Papaya β-galactosidase/galactanase isoforms in differential cell wall hydrolysis and fruit softening during ripening. Plant Physiology and Biochemistry, 42: 847-853.

Martinez-Bilbao, M., Holdsworthz, R. E., Edwardsa, L. A. and Huberl, R. E. 1991. A highly reactive β-galactosidase (Escherichia coli) resulting from a substitution of an aspartic acid for Gly-794. Journal of Biological Chemistry, 266: 4979-4986.

Martinez-Bilbao, M. and Huber, R. E. 1994. Substitutions for Gly-794 show that binding interactions are important determinants of the catalytic action of β-galactosidase (Escherichia coli). Biochemistry and Cell Biology, 72: 313-319.

Macquet, A., Ralet, M. C., Loudet, O., Kronenberger, J., Mouille, G., Marion-Poll, A. and North, H. M. 2007. A naturally occurring mutation in an Arabidopsis accession affects a β-d-galactosidase that increases the hydrophilic potential of rhamnogalacturonan I in seed mucilage. Plant Cell, 19: 3990-4006.

Moctezuma, E., Smith, D. L. and Gross, K. C. 2003. Antisense suppression of a β-galactosidase gene (TBG6) in tomato increases fruit cracking. Journal of Experimental Botany, 54: 2025-2033.

Mwaniki, M. W., Mathooko, F. M., Matsuzaki, M., Hiwasa, K., Tateishi, A., Ushijima, K., Nakano, R., Inaba, A. and Kubo, Y. 2005. Expression characteristics of seven members of the β-galactosidase gene family in ‘La France’ pear (Pyrus communis L.) fruit during growth and their regulation by 1-methylcyclopropene during postharvest ripening. Postharvest Biology and Technology, 36: 253-263.

Ogasawara, S., Abe, K. and Nakajima, T. 2007. Pepper β-galactosidase 1 (PBG1) plays a significant role in fruit ripening in bell pepper (capsicum annuum). Bioscience, Biotechnology and Biochemistry, 71: 309-322.

Ozeki, Y., Matsui, T., Suzuki, M. and Titani, K. 1991. Amino acid sequence and molecular characterization of a β-galactoside-specific lectin purified from sea urchin (Anthocidaris crassispina) eggs. Biochemistry,30:2391-2394.

Parisien, M. and Major, F. 2007. Ranking the factors that contribute to protein β-sheet folding. Proteins: Structure, Function and Bioinformatics, 68: 824-829.

Poch, O., L'hote, H., Dallery, V., Debeaux, F., Fleer, R. and Sodoyer, R. 1992. Sequence of the Kluyveromyces lactis β-galactosidase: comparison with prokaryotic enzymes and secondary structure analysis. Gene, 118: 55-63.

Reiter, W. D. and Vanzin, G. F. 2001. Molecular genetics of nucleotide sugar interconversion pathways in plants. Plant Molecular Biology, 47: 95-113.

Rogers, H. J., Maund, S. L. and Johnson, L. H. 2001. A β-galactosidase-like gene is expressed during tobacco pollen development. Journal of Experimental Botany, 52: 67-75.

Rolin, D., Baldet, P., Just, D., Chevalier, C., Biran, M. and Raymond, P. 2000. NMR study of low subcellular pH during the development of cherry tomato fruit. Australian Journal of Plant Physiology, 27: 61-69.

Rost, B. and Sander, C. 1993. Prediction of protein secondary structure at better than 70% accuracy. Journal of Molecular Biology, 232: 584-99.

Ross, G. S., Wagrzyn, T., MacRae, E. A. and Redgwell, R. J. 1994. Apple β-galactosidase: activity against cell wall polysaccharides and characterization of a related cDNA clone. Plant Physiology, 106: 521-528.

Spiwok, V., Lipovová, P., Skálová, T., Buchtelová, E., Hašek, J. and Králová, B. 2004. Role of CH/π interactions in substrate binding by Escherichia coli β-galactosidase. Carbohydrate Research, 339: 2275-2280.

Smith, D. L. and Gross, K. C. 2000. A family of at least seven β-galactosidase genes is expressed during tomato fruit development. Plant Physiology, 123: 1173-1183.

Smith, D. L., Abbott, J. A. and Gross, K.C. 2002. Down-regulation of tomato β-galactosidase 4 results in decreased fruit softening. Plant Physiology, 129: 1-8.

Tanthanuch, W., Chantarangsee, M., Maneesan, J. and Ketudat-Cairns, J. 2008. Genomic and expression analysis of glycosyl hydrolase family 35 genes from rice (Oryza sativa L.).BMC Plant Biology, 8: 84.

Tateishi, A., Inoue, H., Shiba, H. and Yamaki, S. 2001. Molecular cloning of β-galactosidase from Japanese pear (Pyrus pyrifolia) and its gene expression with fruit ripening. Plant and Cell Physiology, 42: 492-498.

Tateishi, A., Shiba, H., Ogihara, J., Isobe, K., Nomura, K., Watanabe, K. and Inoue, H. 2007. Differential expression and ethylene regulation of β-galactosidase genes and isozymes isolated from avocado (Persea americana Mill.) fruit. Postharvest Biology and Technology, 45: 56-65.

Taylor, M. E. and Drickamer, K. 2006. Introduction to Glycobiology (2nd ed.). Oxford University Press, USA.

Tello-Solís, S. R., Jiménez-Guzmán, J., Sarabia-Leos, C., Gómez-Ruíz, L., Cruz-Guerrero, A. E., Rodríguez-Serrano, G. M. and García-Garibay, M. 2005. Determination of the secondary structure ofKluyveromyces lactis β-galactosidase by circular dichroism and its structure-activity relationship as a function of the pH. Journal of Agricultural and Food Chemistry, 53: 10200-10204.

Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22: 4673-4680.

Triantafillidou, D. and Georgatsos, J. G. 2001. Barley β-Galactosidase: Structure, function, heterogeneity, and gene origin. Journal of Protein Chemistry, 20: 551-562.

Varki, A., Cummings, R. D., Esko, J. D., Freeze, H. H., Stanley, P., Bertozzi, C. R., Hart, G. W. and Etzler, M. E. 2009. Essentials of Glycobiology (2nd ed.). Cold Spring Harbor Laboratories Press, Cold Spring Harbor - New York.

Wu, Z. and Burns, J. K. 2004. A β-galactosidase gene is expressed during mature fruit abscission of‘Valencia’ orange.  Journal of Experimental Botany, 55: 1483-1490.

Zhang, H. M. and Liu, J. Y. 2005. Molecular cloning and characterization of a β-galactosidase gene expressed preferentially in cotton fibers. Journal of Integrative Plant Biology, 47: 223-232.