بررسی اثر ژن‌های Ehd1 و Ehd3 بر زمان خوشه‌دهی در ارقام برنج

نوع مقاله: علمی - پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسیارشد بیوتکنولوژی کشاورزی، گروه زراعت و اصلاح نباتات، دانشکده علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری

2 استادیار گروه علوم و زیست فناوری گیاهی، دانشکده علوم و فناوری زیستی، دانشگاه شهید بهشتی تهران، تهران

چکیده

کنترل زمان گل‌دهی یکی از مهم‌ترین اجزای اثر متقابل بین گیاهان و محیط رشد آن‌ها می‌باشد که نه تنها برای میزان محصول تولیدی بلکه برای کیفیت دانه برنج نیز عامل مهمی به‌­حساب می‌آید. در این تحقیق مطالعات فنوتیپی و مولکولی بر روی 45 رقم برنج محلی و اصلاح شده انجام شد. ابتدا چندشکلی ژن‌های Ehd1 و Ehd3 در بین ارقام و سپس ارتباط این دو ژن با زمان خوشه‌دهی مورد بررسی قرار گرفت. نتایج مطالعات فنوتیپی حاکی از وجود تنوع بیشتر در ارقام محلی نسبت به ارقام اصلاح شده بود. ارقام محلی به‌طور متوسط 8 روز زودرس‌تر از ارقام اصلاح شده بودند و تفاوت زمان خوشه‌دهی آن‌ها معنی‌دار بود. آغازگرهای اختصاصی طراحی شده براساس هم‌ردیف‌سازی چندگانه، توانست چندشکلی مورد انتظار را بین ارقام مختلف آشکار سازد. تجزیه ارتباط در جمعیت مورد مطالعه نشان داد که ژن Ehd1 نسبت به ژن Ehd3 تأثیر بیشتری بر زمان خوشه‌دهی داشت (1/12 در مقابل 4/5 درصد) و اثر افزایشی آن‌ها به‌ترتیب 4/3 و 2/2 روز برآورد شد. با توجه به کمّی بودن صفت مورد مطالعه و اثر کم دو ژن فوق بر زمان خوشه‌دهی، می‌توان نتیجه‌گیری نمود که به‌نژادگر هنگام اصلاح ارقام زودرس باید به نقش سایر ژن‌ها و اثرات متقابل آن‌ها نیز توجه نماید. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of Impact of Ehd1 and Ehd3 Genes on Heading Date in Rice Cultivars

نویسندگان [English]

  • Leila Nayyeripasand 1
  • Asadollah Ahmadikha 2
1 Former M.Sc. Student of Biotechnology, Department of Agronomy and Plant Breeding, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University, Sari
2 Assistant Professor, Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, University of Shahid Beheshti, Tehran
چکیده [English]

Flowering time control is one of the most important components of interactions between plants and their growth environment that is a crucial factor not only for yield rate but also for rice grain quality. In this research phenotypic and molecular studies were conducted in 45 local and improved rice cultivars. Firstly polymorphism of Ehd1 and Ehd3 genes between the cultivars was studied and then the association of the two genes with heading date was investigated. Results of phenotypic studies indicated the existence of higher variation of heading date in local cultivars than that of improved cultivars. Local cultivars had on average 8 days earliness relative to improved ones, with being significant difference between their heading dates. Specific primers designed based on multiple alignments could detect polymorphism between different cultivars. Association studies showed that pooled population Ehd1 had a higher association with heading date than Ehd3 (12.1 vs. 5.4%) and their additive effects were estimated, respectively, 3.4 and 2.2 days. Regarding to quantitative nature of the studied trait and minor effects of the two genes on heading date, it can be concluded that when improving early-mature cultivars utilizing the two genes breeders might consider the roll of other genes and their interactions.

کلیدواژه‌ها [English]

  • Association
  • Heading date
  • Rice
  • Candidate genes

Ahmadikhah, A. 2009. A rapid mini-prep DNA extraction method in rice. African Journal of Biotechnology, 8(2): 234-238.

Ahmadikhah, A. and Irannejad, A. 2010. Development of a co-dominant CMS-specific ALP marker in Tobacco (Nicotinia tabacum). Annals of Biological Research, 1(3): 101-106.

Ahmadikhah, A., Arkhy, A. and Ghafari, H. 2010. Development of an allele specific amplification (ASA) co-dominant marker for fragrance genotyping of rice cultivars. Archive of Appleid Science Research, 2(1): 204-211.

Doi, K., Izawa, T., Fuse, T., Yamanouchi, U., Kubo, T., Shimatani, Z. and Yoshimura, A. 2004. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Development, 18: 926-936.

Ebana, K., Shibaya, T. and Wu, J. 2011. Uncovering of major genetic factors generating naturally occurring variation in heading date among Asian rice cultivars. Theoretical and Applied Genetics, 122: 1199-1210.

Ehlen, T. and Dubeau, L. 1989. Detection of Ras point mutations by polymerasechain reaction using mutation-specific, inosine-containing oligonucleotide primers. Biochemistry and Biophysics Research Communications, 160: 441-447.

Gaafar, R. M. 2010. Molecular marker analysis of heading date Hd1 locus in Egyptian rice varieties. Biotechnology, 23: 3368-3372.

Gao, H., Zheng, X. M., Fei, G., Chen, J., Jin, M., Ren, Y., Wu, W., Zhou, K., Sheng, P., Zhou, F., Jiang, L., Wang, J., Zhang, X., Guo, X., Wang, J. L., Cheng, Z., Wu, C., Wang, H. and Wan, J. M. 2013. Ehd4 encodes a novel and oryza-genus-specific regulator of photoperiodic flowering in Rice. PLoS Genetics, 9(2): e1003281.

Garris, A. J., Tai, T. H., Coburn, J., Kresovich, S. and McCouch, S. 2005. Genetic structure and diversity in Oryza sativa L., Genetics, 169: 1631-1638.

Goff, S. A., Ricke, D., Lan, T. H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H. and Hadley, D. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. Japonica). Science, 296: 92-100.

Green, E. K. 2002. Allele-specific oligonucleotide PCR in: PCR mutation detection protocols (Eds. Theophilus, B. D. M. and Rapley, R.). Humana Press, Birmingham, UK, pp. 47-50.

Green, E. K., Bain, S. C., Day, P. J., Barnett, A. H., Charleson, F., Jones, A. F. and Walker, M. R. 1991. Detection of human apolipoprotein E3, E2, and E4 genotypes by an allele-specific oligonucleotide-primed polymerase chain reaction assay: development and validation. Clinical Chemistry, 37: 1263-1268.

Hayama, R. and Coupland, G. 2004. The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiology, 135: 677-684.

Hirotsu, N., Murakami, N., Kashiwagi, T., Ujiie, K. and Ishimaru, K. 2010. A simple gel-free method for SNP genotyping using allele-specific primers in rice and other plant species. Plant Methods, 6: 12.

Huang, C. L., Hung, C. Y., Chiang, Y. C., Hwang, C. C., Hsu, T. W., Huang, C. C., Hung, K. H., Tsai, K. C., Wang, K. H., Osada, N., Schaal, B. A. and Chiang, T. Y. 2012. Footprints of natural and artificial selection for photoperiod pathway genes in Oryza. The Plant Journal, 70: 769-782.

Itoh, H., Nonoue, Y., Yano, M. and Izawa, T. 2010. A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. National Genetics, 42: 635-638.

Izawa, T. 2007. Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. Journal of Experimental Botany, 58: 3091-3097.

Kinnear, P. R. and Colin, D. G. 2000. SPSS for Windows made simple: Release 10. Psychology Press, Hove, UK.

Komiya, R., Yokoi, S. and Shimamoto, K. 2009. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development, 136: 3443-3450.

LaFramboise, T., Weir, B. A., Zhao, X., Beroukhim, R., Li, C., Harrington, D., Sellers, W. R. and Meyerson, M. 2005. Allele-specific amplification in cancer revealed by SNP array analysis. PLos Computational Biology, 1(6): e65.

Laurie, D. A. 1997. Comparative genetics of flowering time. Plant Molecular Biology, 35: 167-177.

Lee, Y. S., Jeong, D. H., Lee, D. Y., Yi, J., Ryu, C. H., Kim, S. L., Jeong, H. J., Choi, S. C., Jin, P., Yang, J. and Cho, L. H. 2010. OsCOL4 is a constitutive flowering repressor of Ehd1 and downstream of OsphyB. The Plant Journal, 63: 18-30.

Liu, Q. and Sommer, S. S. 2004. Detection of extremely rare alleles by bidirectional pyrophosphorolysis-activated polymerization allele-specific amplification (Bi-PAP-A): measurement of mutation load in mammalian tissues. BioTechniques, 36: 156-166.

Liu, Q. Q., Li, Q. F., Cai, X. L., Wang, H. M., Tang, S. Z., Yu, H. X., Wang, Z. Y. and Gu, M. H. 2006. Molecular marker-assisted selection for improved cooking and eating quality of two elite parents of hybrid rice. Crop Science, 46: 2354-2360.

Main, B. J., Jones, P. J., MacGillivary, R. T. A. and Banfield, D. K. 1991. Apolipoprotein E genotyping using the polymerase chain reaction and allele-specific oligonucleotide primers. Journal of Lipid Research, 32: 183-187.

Matsubara, K., Yamanouchi, U., Nonoue, Y., Sugimoto, K., Wang, Z. X., Minobe, Y. and Yano, M. 2011. Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering. The Plant Journal, 66: 603-612.

Matsubara, K., Yamanouchi, U., Wang, Z. X., Minobe, Y., Izawa, T. and Yano, M. 2008. Ehd2, a rice ortholog of the maize INDETERMINATE1 gene, promotes flowering by up-regulating Ehd1. Plant Physiology, 148: 1425-1435.

Myles, S., Peiffer, J., Brown, P. J., Ersoz, E. S., Zhang, Z., Costich, D. E. and Buckler, E. S. 2009. Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell, 21(8): 2194-2202.

Nayyeripasand, L., Nematzadeh, Gh., Babaeian Jelodar, N., Ahmadikhah, A. and Azimi, M. R. 2013. Development of an allele-specific functional marker for studying Hd1 effect on flowering time of rice. International Research Journal of Basic and Applied Sciences, 4(5): 1000-1006.

Newton, C. R., Summers, C., Schwarz, M., Graham, A., Heptinstall, L. E., Super, M., Anwar, R., Smith, J. C. and Markham, A. F. 1989. Amplification refractory mutation system for prenatal diagnosis and carrier assessment in cystic fibrosis. Lancet, 2: 1481-1483.

Park, S. J., Kim, S. L., Lee, S., Je, B. I., Piao, H. L., Park, S. H., Kim, C. M., Ryu, C. H., Park, S. H., Xuan, Y. H. and Colasanti, J. 2008. Rice Indeterminate1 (OsId1) is necessary for the expression of Ehd1 (Early heading date 1) regardless of photoperiod. The Plant Journal, 56: 1018-1029.

Peng, L. T., Shi, Z. Y., Li, L., Shen, G. Z. and Zhang, J. L. 2007. Ectopic expression of OsLFL1 in rice represses Ehd1 by binding on its promoter. Biochemical and Biophysical Research Communications, 360: 251-256.

Ryu, CH., Lee, S., Cho, LH., Kim, SL., Lee, YS.,  Choi, S. C., Jeong, H. J., Yi, J., Park, S. J., HAN, C. D. and An, G. 2009. OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Plant Cell and Environment, 32: 1412-1427.

Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A. and Arnheim, N. 1985. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anaemia. Science, 230: 1350-1354.

Searle, I. and Coupland, G. 2004. Induction of flowering by seasonal changes in photoperiod. The European Molecular Biology Organization Journal, 23: 1217-1222.

Shi, X., Hong, T., Walter, K. L., Ewalt, M., Michishita, E., Hung, T., Carney, D., Pena, P., Lan, F., Kaadige, M. R. and Lacoste, N. 2006. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature, 442: 100-103.

Soleimani, V. D., Baum, B. R. and Johnson, D. A. 2003. Efficient validation of single nucleotide polymorphisms in plants by allele-specific PCR, with an example from barley. Plant Molecular Biology Reporter, 21: 281-288.

Takahashi, Y., Teshima, K. M., Yokoi, S., Innan, H. and Shimamoto, K. 2009. Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice. Proceedings of National Academy of Sciences USA, 106: 4555-4560.

Tamaki, S., Matsuo, S., Wong, H. L., Yokoi, S. and Shimamoto, K. 2007. Hd3a protein is a mobile flowering signal in rice. Science, 316: 1033-1036.

Wang, S., Basten, C. J. and Zeng, Z. B. 2005.Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC.

Wei,X., Xu, J., Guo, H., Jiang, L. and Chen, S. 2010. DTH8 suppresses flowering in rice,influencing plant height and yield potential simultaneously. PlantPhysiology, 153: 1747-1758.

Wu, C., You, C., Li, C., Long, T., Chen, G., Byrne, M. E. and Zhang, Q. 2008. RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proceedings of the National Academy of Sciences USA, 105: 12915-12920.

Wysocka, J., Swigut, T., Xiao, H., Milne, T. A., Kwon, S. Y., Landry, J., Kauer, M., Tackett, A. J., Chait, B. T., Badenhorst, P. and Wu, C. 2006. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature, 442: 86-90.

Xue, W., Xing, Y., Weng, X., Zhao, Y., Tang, W., Wang, L., Zhou, H., Yu, S., Xu, C., Li, X. and Zhang, Q. 2008. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. National Genetics, 40: 761-767.

Yano, M., Katayose, Y. and Ashikari, M. 2000. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 12: 2473-2484.

Yano, M., Kojima, S., Takahashi, Y., Lin, H. and Sasaki, T. 2001. Genetic control of flowering time in rice, a short-day plant. Plant Physiology, 127: 1425-1429.