بهبود فعالیت آنزیم‌های تجزیه‌کننده سلولز با جهش‌زایی در قارچ Trichoderma reesei

نوع مقاله : علمی - پژوهشی

نویسندگان

1 پژوهشگر، گروه گیاهپزشکی و نگهداری مواد غذایی، پژوهشکده کشاورزی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، کرج، ایران

2 استادیار گروه گیاهپزشکی و نگهداری مواد غذایی، پژوهشکده کشاورزی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، کرج، ایران

چکیده

قارچ Trichoderma reesei یکی از گونه‌های مهم تولید­کننده آنزیم‌های تجزیه‌کننده سلولز در طبیعت است. در این پژوهش 21 جدایه جهش‌یافته پرتو گاما از قارچ T. reesei برای تولید آنزیم سلولاز روی محیط محتوی سلولز کلوئیدی غربال‌گری شد. غلظت پروتئین‌های خارج سلولی جدایه‏های وحشی و جهش‌یافته با استفاده از روش بردفورد اندازه‌گیری شد. آویسل، کربوکسی متیل سلولز و کاغذ صافی برای اندازه‌گیری فعالیت سلولازی استفاده شد. هم‌چنین خلوص و ترکیب پروتئین‌های غنی از آنزیم با استفاده از آزمون الکتروفورز ژل پلی‌آکریل‌آمید مورد ارزیابی قرار گرفت. بالاترین میزان تولید پروتئین خارج سلولی در جدایه‌های T. r M7 و T. r M17 مشاهده شد. فعالیت آنزیم‌های اندوگلوکاناز، اگزوگلوکاناز و سلولاز کل در جدایه جهش‌یافته T. r M8 بالاترین مقادیر فعالیت آنزیمی را در بین جدایه‌های جهش‌یافته و وحشی نشان داد. اختلاف وزن مولکولی باندهای آنزیمی نشان داد که آنزیم‌های EG IV، Cel 1A، Cel 12A، Cel 45A، Cel 3A، Cel 7A، Cel 6A، Cel 5A و Cel 61A سلولز کلوئیدی را به‌صورت هم‌افزایی هیدرولیز می‌کنند. این نتایج نشان می‌دهد که جهش‌زایی با پرتو گاما برای دستیابی به جهش‌یافته‌های تریکودرما با تولید بالای آنزیم سلولاز امکان‏‌پذیر است.

کلیدواژه‌ها


عنوان مقاله [English]

Improvement of Cellulose Degrading Enzymes Activity by Mutagenesis in Trichoderma reesei Fungi

نویسندگان [English]

  • Hamed Askari 1
  • Samira Shahbazi 2
1 Researcher, Plant Protection and Food Preservation Department, Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), Alborz, Iran
2 Assistant Professor, Plant Protection and Food Preservation Department, Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), Alborz, Iran
چکیده [English]

Trichoderma reesei is one of the most important fungi producing cellulose degrading enzymes in nature. In this study, 21 mutated isolate via gamma irradiation of T. reesei were screened for cellulase enzyme production on a colloidal cellulose medium. The concentration of extracellular proteins of wild and mutant isolates were measured using Bradford's method. Avicel, carboxymethyl cellulose and filter paper were used to measure cellulase activity. The purity and composition of enzyme-rich proteins were also evaluated using polyacrylamide gel electrophoresis (SDS-PAGE) test. The highest amount of extracellular protein production was observed in T. r M7 and T. r M17 isolates. Activity of endoglucanase, exoglucanase and total cellulase enzymes in mutated isolate T. r M8 showed the highest levels of enzymatic activity among mutant and wild isolates. The difference in the molecular weight of the enzyme bands showed that the EG 4, Cel 1A, Cel 12A, Cel 45A, Cel 3A, Cel 7A, Cel 6A, Cel 5A and Cel 61A enzymes hydrolyzed the colloidal cellulose, synergictly. These results indicate that, mutation induced by gamma radiation is possible to obtain high producing Trichoderma mutants of cellulase enzymes.

کلیدواژه‌ها [English]

  • Trichoderma
  • Cellulase enzyme
  • SDS-PAGE
  • Gamma radiation
  • Mutation
Adney, W. S., Mohagheghi, A., Thomas, S. R. and Himmel, M. 1995. Comparison of protein contents of cellulase preparations in a worldwide round-robin assay. In: Saddler, J. N. and Penner, M. H. (Eds.), Enzymatic Degradation of Insoluble Carbohydrates, ACS Symposium Series 618. American Chemical Society, Washington, pp. 256-271.
Barr, B. K., Hsieh, Y. L., Ganem, B. and Wilson, D. B. 1996. Identification of two functionally different classes of exocellulases. Biochemistry, 35: 586-592.
Bhat, M. K. 2000. Cellulases and related enzymes in biotechnology. Biotechnology Advances. 18: 355-383.
Bhikhabhai, R., Johansson, G. and Pettersson, G. 1984. Isolation of cellulolytic enzymes from Trichoderma reesei QM 9414. Journal of applied biochemistry, 6: 336-345.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2): 248-254.
Divne, C., Ståhlberg, J., Teeri, T. T. and Jones, T. A. 1998. High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei. Journal of molecular biology. 275: 309-325.
Fägerstam, L. G. and Pettersson, L.. 1980. The 1,4-beta-glucan cellobiohydrolases of Trichoderma reesei QM 9414. A new type of cellulolytic synergism. FEBS Letters, 119: 97-100.
Fägerstam, L., Håkansson, U., Pettersson, G. and Andersson, L. 1977. Purification of three different cellulolutic enzymes from Trichoderma viride QM 9414 on a large scale. In Proceedings of Bioconversion Symposium, Feb 21-23. (ed. T. Gohose), pp. 165-178. Indian Institute of Technology, New Delhi.
Foreman, PK., Brown, D., Dankmeyer, L., Dean, R., Diener, S., Dunn-Coleman, NS., Goedegebuur, F., Houfek, TD., England, GJ., Kelley, AS., Meerman, HJ., Mitchell, T., Mitchinson, C., Olivares, HA., Teunissen, PJ., Yao, J. and Ward, M. 2003. Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. Journal of Biological Chemistry. 278: 31988-31997.
Gama, F. M. and Mota, M. 1998. Cellulases for oligosaccharide synthesis: a preliminary study. Carbohydrate Polymers, 37: 279-281.
Ike, M., Park, J. Y., Tabuse, M. and Tokuyasu, K. 2010. Cellulase production on glucose-based media by the UV-irradiated mutants of Trichoderma reesei. Applied Microbiology and Biotechnology, 87(6): 2059-2066.
Ilmen, M., Saloheimo A., Onnela, M. L. and Penttila, M. E. 1997. Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Applied and Environmental Microbiology, 63: 1298-306.
Karlsson, J., Saloheimo, M., Siika-aho, M., Tenkanen, M., Penttilä, M. and Tjerneld, F. 2001. Homologous expression and characterization of Cel61A (EG IV) of Trichoderma reesei. European journal of biochemistry, 268: 6498-6507.
Kim, K. C., Seung-Soo, Y. Oh., Young, A. and Seong-Jun, K. 2003. Isolation and characteristics of Trichoderma harzianum FJ1 producing cellulases and xylanase. Journal of microbiology and biotechnology. 13: 1-8.
Klemm, D., Schmauder, H. P. and Heinze, T. 2002. Cellulose. 6: 290-292. In: Vandamme, E. J. De Baets, S. and Steinbüchel, A. (eds). Biopolymers. Wiley, Weinheim.
Klyosov, A. A. 1988. Cellulases of the third generation. In: Aubert, J. P., Beguin, P., Millet, J., editors. Biochemistry and genetics of cellulose degradation. London: Academic Press. p. 87-99.
Klyosov, A. A. 1990. Trends in biochemistry and enzymology of cellulose degradation. Biochemistry, 29: 10577-10585.
Kuhls, K., Lieckfeldt, E., Samuels, G. J., Kovacs, W., Meyer, W., Petrini, O., Gams, W., Borner, T. and Kubicek, CP. 1996. Molecular evidence that the asexual industrial fungus Trichoderma reesei is a clonal derivative of the ascomycete Hypocrea jecorina. Proceedings of the National Academy of Sciences, 93: 7755-7760.
Laemmli, U. K. 1970. Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-685.
Martinez, D., Berka, R. M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S. E., Chapman, J., Chertkov, O., Coutinho, P. M., Cullen, D., Danchin, E. G., Grigoriev, I. V., Harris, P., Jackson, M., Kubicek, C. P., Han, C. S., Ho, I., Larrondo, L. F., de Leon, A. L., Magnuson, J. K., Merino, S., Misra, M., Nelson, B., Putnam, N., Robbertse, B., Salamov, A. A., Schmoll, M., Terry, A., Thayer, N., Westerholm-Parvinen, A., Schoch, C. L., Yao, J., Barabote, R., Nelson, M. A., Detter, C., Bruce, D., Kuske, C. R., Xie, G., Richardson, P., Rokhsar, D. S., Lucas, S. M., Rubin, E. M., Dunn-Coleman, N., Ward, M. and Brettin, T. S. 2008. Genome sequencing and analysis of the biomassdegrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology, 26(5): 553-560.
Medve, J., Stahlberg, J. and Tjerneld, F. 1994. Adsorption and synergism of cellobiohydrolase I and II of Trichoderma reesei during hydrolysis of microcrystalline cellulose. Biotechnology and bioengineering, 44: 1064-1073.
Montenecourt, B. and Eveligh, D. 1997. Preparation of mutants of Trichoderma reesei with enhanced cellulase production. Applied and Environmental Microbiology, 34: 777-782.
Moradi, R., Shahbazi, S., Ahari Mostafavi, H., Ebrahimi, M. A., Askari, H. and Mirmajlesi, M. 2013. Investigation of Gamma radiation effects on morphological and antagonistic characteristics of Trichoderma harzianum. Crop Biotechnology, 4: 109-117.
Muthuvelayudham, R. and Viruthagiri, T. 2006. Fermentative production and kinetics of cellulose protein on Trichoderma reesei using sugarcane bagasse and rice straw. African Journal of Biotechnology, 5(20): 1873-1881.
Nevalainen, H., Suominen, P. and Taimisto, K. 1993. On the safety of Trichodermareesei. Journal of Biotechnology,37: 193-200.
Nidetzky, B. and Claeyssens, M. 1994. Specific quantification of Trichoderma reesei cellulases in reconstituted mixtures and its application to cellulase-cellulose binding studies. Biotechnology and bioengineering, 44: 961-966.
Nidetzky, B. and Steiner, W. 1993. A new approach for modeling cellulase-cellulose adsorption and the kinetics of the enzymatic hydrolysis of microcrystalline cellulose. Biotechnology and bioengineering, 42: 469-479.
Peciulyte, A., Anasontzis, G. E., Karlström, K., Larsson, P. T. and Olsson, L. 2014. Morphology and enzyme production of Trichoderma reesei Rut C-30 are affected by the physical and structural characteristics of cellulosic substrates. Fungal Genetics and Biology, 72: 64-72.
Persson, I., Tjerneld, F., Hahn-Hagerdahl, B. 1991. Fungal cellulytic enzyme production: a review. Process Biochemistry, 26: 65-74.
Peterson, R. and Nevalainen, H. 2012. Trichoderma reesei RUT-C30–thirty years of strain improvement. Microbiology, 158(1): 58-68.
Reinikainen, T. 1994. The cellulose-binding domain of cellobiohydrolase I from Trichoderma reesei. Interaction with cellulose and application in protein immobiliz: Dissertation. Espoo: VTT Technical Research Centre of Finland.
Sajith, S., Priji, P., Sreedevi, S. and Benjamin, S. 2016. An overview on fungal cellulases with an industrial perspective. Journal of Nutrition & Food Sciences, 6: 461. doi:10.4172/2155-9600.1000461.
Schuster, A., Bruno, K. S., Collett, J. R., Baker, S. E., Seiboth, B., Kubicek, C. P. and Schmoll, M. 2012. A versatile toolkit for high throughput functional genomics with Trichoderma reesei. Biotechnology for Biofuels, 5(1), 1.
Shoemaker, S. P., Brown, R. D. Jr. 1978. Enzymatic activities of endo-1,4-h-D-glucanases purified from Trichoderma viride. Biochimica et Biophysica Acta (BBA)-Enzymology, 523: 133-146.
Shoemaker, S., Schweickaut, V., Ladner, M., Gelfand, D., Kwok, S., Myambo, K. and Innis, M., 1983. Molecular cloning of exocellobiohydrolase I derived from Trichoderma reesei strain L27. Bio/technology, 1: 691-696.
Srisodsuk, M., Kleman-Leyer, K., Keranen, S., Kirk, T. K. and Teeri, T.T. 1998. Modes of action on cotton and bacterial cellulose of a homologous endoglucanase-exoglucanase pair from Trichoderma reesei. European journal of biochemistry, 251(3): 885-892.
Ståhlberg, J. 1991. Functional organization of cellulases from Trichoderma reesei. In Doctoral thesis. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science 344. 45pp, Uppsala. ISBN 91-554-2800-2. Uppsala University.
Teeri, T. and Koivula, A. 1995. Cellulose degradation by native and engineered fungal cellulases. Carbohydrates in Europe. 12: 28-33.
Valjamae, P., Sild, V., Pettersson, G. and Johansson, G. 1998. The initial kinetics of hydrolysis by cellobiohydrolases I and II is consistent with a cellulose surface - erosion model. European Journal of Biochemistry, 253: 469-475.
vanTilbeurgh, H., Claeyssens, M. and de Bruyne, CK. 1982. To use of 4-methylum-belliferyl and other chromophoric glycosides in the study of cellulolytic enzymes. FEBS letters, 149: 152-156.
vanTilbeurgh, H., Pettersson, G., Bhikabhai, R., De Boeck, H. and Claeyssens, M. 1985. Studies of the cellulolytic system of Trichoderma reesei QM 9414. Reaction specifcity and thermodynamics of interactions of small substrates and ligands with the 1,4-beta-glucan cellobiohydrolase II. European journal of biochemistry, 148: 329-334.
Wen, Z., Liao, W. and Chen, Sh. 2005. Production of cellulase by Trichoderma reesei from dairy manure. Bioresour. Technol, 96: 491-499.
Wood, T. M. and Bhat, K. M. 1988. Methods for measuring cellulase activities. In Methods in enzymology, 160: 87-117.
Zaia, D. A. M., Zaia, C. T. B. V. and Lichtig, J. 1998. Determinatio de proteinastotais via espectrofometria: vantagens e desvantagens dos métodosexistentes. Química nova, 21: 787-793.
Zhang, S., Wolfgang, D. E. and Wilson, D. B. 1999. Substrate heterogeneity causes the nonlinear kinetics of insoluble cellulose hydrolysis. Biotechnology and bioengineering, 66: 35-41.
Zhang, Y.H.P. and Lynd, L.R., 2006. A functionally based model for hydrolysis of cellulose by fungal cellulase. Biotechnology and Bioengineering, 94(5): 888-898.