Adney, W. S., Mohagheghi, A., Thomas, S. R. and Himmel, M. 1995. Comparison of protein contents of cellulase preparations in a worldwide round-robin assay. In: Saddler, J. N. and Penner, M. H. (Eds.), Enzymatic Degradation of Insoluble Carbohydrates, ACS Symposium Series 618. American Chemical Society, Washington, pp. 256-271.
Barr, B. K., Hsieh, Y. L., Ganem, B. and Wilson, D. B. 1996. Identification of two functionally different classes of exocellulases. Biochemistry, 35: 586-592.
Bhat, M. K. 2000. Cellulases and related enzymes in biotechnology. Biotechnology Advances. 18: 355-383.
Bhikhabhai, R., Johansson, G. and Pettersson, G. 1984. Isolation of cellulolytic enzymes from Trichoderma reesei QM 9414. Journal of applied biochemistry, 6: 336-345.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2): 248-254.
Divne, C., Ståhlberg, J., Teeri, T. T. and Jones, T. A. 1998. High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei. Journal of molecular biology. 275: 309-325.
Fägerstam, L. G. and Pettersson, L.. 1980. The 1,4-beta-glucan cellobiohydrolases of Trichoderma reesei QM 9414. A new type of cellulolytic synergism. FEBS Letters, 119: 97-100.
Fägerstam, L., Håkansson, U., Pettersson, G. and Andersson, L. 1977. Purification of three different cellulolutic enzymes from Trichoderma viride QM 9414 on a large scale. In Proceedings of Bioconversion Symposium, Feb 21-23. (ed. T. Gohose), pp. 165-178. Indian Institute of Technology, New Delhi.
Foreman, PK., Brown, D., Dankmeyer, L., Dean, R., Diener, S., Dunn-Coleman, NS., Goedegebuur, F., Houfek, TD., England, GJ., Kelley, AS., Meerman, HJ., Mitchell, T., Mitchinson, C., Olivares, HA., Teunissen, PJ., Yao, J. and Ward, M. 2003. Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. Journal of Biological Chemistry. 278: 31988-31997.
Gama, F. M. and Mota, M. 1998. Cellulases for oligosaccharide synthesis: a preliminary study. Carbohydrate Polymers, 37: 279-281.
Ike, M., Park, J. Y., Tabuse, M. and Tokuyasu, K. 2010. Cellulase production on glucose-based media by the UV-irradiated mutants of Trichoderma reesei. Applied Microbiology and Biotechnology, 87(6): 2059-2066.
Ilmen, M., Saloheimo A., Onnela, M. L. and Penttila, M. E. 1997. Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Applied and Environmental Microbiology, 63: 1298-306.
Karlsson, J., Saloheimo, M., Siika-aho, M., Tenkanen, M., Penttilä, M. and Tjerneld, F. 2001. Homologous expression and characterization of Cel61A (EG IV) of Trichoderma reesei. European journal of biochemistry, 268: 6498-6507.
Kim, K. C., Seung-Soo, Y. Oh., Young, A. and Seong-Jun, K. 2003. Isolation and characteristics of Trichoderma harzianum FJ1 producing cellulases and xylanase. Journal of microbiology and biotechnology. 13: 1-8.
Klemm, D., Schmauder, H. P. and Heinze, T. 2002. Cellulose. 6: 290-292. In: Vandamme, E. J. De Baets, S. and Steinbüchel, A. (eds). Biopolymers. Wiley, Weinheim.
Klyosov, A. A. 1988. Cellulases of the third generation. In: Aubert, J. P., Beguin, P., Millet, J., editors. Biochemistry and genetics of cellulose degradation. London: Academic Press. p. 87-99.
Klyosov, A. A. 1990. Trends in biochemistry and enzymology of cellulose degradation. Biochemistry, 29: 10577-10585.
Kuhls, K., Lieckfeldt, E., Samuels, G. J., Kovacs, W., Meyer, W., Petrini, O., Gams, W., Borner, T. and Kubicek, CP. 1996. Molecular evidence that the asexual industrial fungus Trichoderma reesei is a clonal derivative of the ascomycete Hypocrea jecorina. Proceedings of the National Academy of Sciences, 93: 7755-7760.
Laemmli, U. K. 1970. Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-685.
Martinez, D., Berka, R. M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S. E., Chapman, J., Chertkov, O., Coutinho, P. M., Cullen, D., Danchin, E. G., Grigoriev, I. V., Harris, P., Jackson, M., Kubicek, C. P., Han, C. S., Ho, I., Larrondo, L. F., de Leon, A. L., Magnuson, J. K., Merino, S., Misra, M., Nelson, B., Putnam, N., Robbertse, B., Salamov, A. A., Schmoll, M., Terry, A., Thayer, N., Westerholm-Parvinen, A., Schoch, C. L., Yao, J., Barabote, R., Nelson, M. A., Detter, C., Bruce, D., Kuske, C. R., Xie, G., Richardson, P., Rokhsar, D. S., Lucas, S. M., Rubin, E. M., Dunn-Coleman, N., Ward, M. and Brettin, T. S. 2008. Genome sequencing and analysis of the biomassdegrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology, 26(5): 553-560.
Medve, J., Stahlberg, J. and Tjerneld, F. 1994. Adsorption and synergism of cellobiohydrolase I and II of Trichoderma reesei during hydrolysis of microcrystalline cellulose. Biotechnology and bioengineering, 44: 1064-1073.
Montenecourt, B. and Eveligh, D. 1997. Preparation of mutants of Trichoderma reesei with enhanced cellulase production. Applied and Environmental Microbiology, 34: 777-782.
Moradi, R., Shahbazi, S., Ahari Mostafavi, H., Ebrahimi, M. A., Askari, H. and Mirmajlesi, M. 2013. Investigation of Gamma radiation effects on morphological and antagonistic characteristics of Trichoderma harzianum. Crop Biotechnology, 4: 109-117.
Muthuvelayudham, R. and Viruthagiri, T. 2006. Fermentative production and kinetics of cellulose protein on Trichoderma reesei using sugarcane bagasse and rice straw. African Journal of Biotechnology, 5(20): 1873-1881.
Nevalainen, H., Suominen, P. and Taimisto, K. 1993. On the safety of Trichodermareesei. Journal of Biotechnology,37: 193-200.
Nidetzky, B. and Claeyssens, M. 1994. Specific quantification of Trichoderma reesei cellulases in reconstituted mixtures and its application to cellulase-cellulose binding studies. Biotechnology and bioengineering, 44: 961-966.
Nidetzky, B. and Steiner, W. 1993. A new approach for modeling cellulase-cellulose adsorption and the kinetics of the enzymatic hydrolysis of microcrystalline cellulose. Biotechnology and bioengineering, 42: 469-479.
Peciulyte, A., Anasontzis, G. E., Karlström, K., Larsson, P. T. and Olsson, L. 2014. Morphology and enzyme production of Trichoderma reesei Rut C-30 are affected by the physical and structural characteristics of cellulosic substrates. Fungal Genetics and Biology, 72: 64-72.
Persson, I., Tjerneld, F., Hahn-Hagerdahl, B. 1991. Fungal cellulytic enzyme production: a review. Process Biochemistry, 26: 65-74.
Peterson, R. and Nevalainen, H. 2012. Trichoderma reesei RUT-C30–thirty years of strain improvement. Microbiology, 158(1): 58-68.
Reinikainen, T. 1994. The cellulose-binding domain of cellobiohydrolase I from Trichoderma reesei. Interaction with cellulose and application in protein immobiliz: Dissertation. Espoo: VTT Technical Research Centre of Finland.
Sajith, S., Priji, P., Sreedevi, S. and Benjamin, S. 2016. An overview on fungal cellulases with an industrial perspective. Journal of Nutrition & Food Sciences, 6: 461. doi:10.4172/2155-9600.1000461.
Schuster, A., Bruno, K. S., Collett, J. R., Baker, S. E., Seiboth, B., Kubicek, C. P. and Schmoll, M. 2012. A versatile toolkit for high throughput functional genomics with Trichoderma reesei. Biotechnology for Biofuels, 5(1), 1.
Shoemaker, S. P., Brown, R. D. Jr. 1978. Enzymatic activities of endo-1,4-h-D-glucanases purified from Trichoderma viride. Biochimica et Biophysica Acta (BBA)-Enzymology, 523: 133-146.
Shoemaker, S., Schweickaut, V., Ladner, M., Gelfand, D., Kwok, S., Myambo, K. and Innis, M., 1983. Molecular cloning of exocellobiohydrolase I derived from Trichoderma reesei strain L27. Bio/technology, 1: 691-696.
Srisodsuk, M., Kleman-Leyer, K., Keranen, S., Kirk, T. K. and Teeri, T.T. 1998. Modes of action on cotton and bacterial cellulose of a homologous endoglucanase-exoglucanase pair from Trichoderma reesei. European journal of biochemistry, 251(3): 885-892.
Ståhlberg, J. 1991. Functional organization of cellulases from Trichoderma reesei. In Doctoral thesis. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science 344. 45pp, Uppsala. ISBN 91-554-2800-2. Uppsala University.
Teeri, T. and Koivula, A. 1995. Cellulose degradation by native and engineered fungal cellulases. Carbohydrates in Europe. 12: 28-33.
Valjamae, P., Sild, V., Pettersson, G. and Johansson, G. 1998. The initial kinetics of hydrolysis by cellobiohydrolases I and II is consistent with a cellulose surface - erosion model. European Journal of Biochemistry, 253: 469-475.
vanTilbeurgh, H., Claeyssens, M. and de Bruyne, CK. 1982. To use of 4-methylum-belliferyl and other chromophoric glycosides in the study of cellulolytic enzymes. FEBS letters, 149: 152-156.
vanTilbeurgh, H., Pettersson, G., Bhikabhai, R., De Boeck, H. and Claeyssens, M. 1985. Studies of the cellulolytic system of Trichoderma reesei QM 9414. Reaction specifcity and thermodynamics of interactions of small substrates and ligands with the 1,4-beta-glucan cellobiohydrolase II. European journal of biochemistry, 148: 329-334.
Wen, Z., Liao, W. and Chen, Sh. 2005. Production of cellulase by Trichoderma reesei from dairy manure. Bioresour. Technol, 96: 491-499.
Wood, T. M. and Bhat, K. M. 1988. Methods for measuring cellulase activities. In Methods in enzymology, 160: 87-117.
Zaia, D. A. M., Zaia, C. T. B. V. and Lichtig, J. 1998. Determinatio de proteinastotais via espectrofometria: vantagens e desvantagens dos métodosexistentes. Química nova, 21: 787-793.
Zhang, S., Wolfgang, D. E. and Wilson, D. B. 1999. Substrate heterogeneity causes the nonlinear kinetics of insoluble cellulose hydrolysis. Biotechnology and bioengineering, 66: 35-41.
Zhang, Y.H.P. and Lynd, L.R., 2006. A functionally based model for hydrolysis of cellulose by fungal cellulase. Biotechnology and Bioengineering, 94(5): 888-898.