جداسازی و توالی‌یابی ژن مربوط به آنتی‌پورتر هیدروژن/ سدیم غشای واکوئلی گیاه هالوفیت (.Kochia scoparia L)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد، گروه علوم باغبانی و فضای سبز، دانشکده کشاورزی، دانشگاه زابل، ایران

2 دانشیار، گروه اصلاح نباتات و بیوتکنولوژی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

3 مربی پژوهشی، پژوهشکده کشاورزی و زیست فناوری دانشگاه زابل، ایران

چکیده

در این پژوهش از گیاه دولپه‌ای و شورزی کوشیا (Kochia scoparia)به‌عنوان منبع برای جداسازی ژن استفاده شد. ابتدا با استفاده از پرایمرهای طراحی‌شده در مناطق حفاظت‌شدۀ این ژن در گیاهان هم‌خانواده، طول 1605 نوکلئوتیدی و توالی 535 اسید‌آمینه‌ای از توالی کدکنندۀ این ژن شناسایی و توالی‌یابی شد. با استفاده از آنالیز BLAST میزان شباهت این توالی با 90%-87% همولوژی در سطح نوکلئوتیدی و 99%-98% در سطح اسید‌آمینه‌ای با ژن‌هایNHX  گیاهان خانوادۀ اسفناجیان تعیین شد. آنالیزهای تعیین خصوصیات پروتئینی و ارتباط آن با پروتئین­های دیگر با استفاده از مطالعات بیوانفورماتیکیانجام شد. براساس وجود ساختارهای دوم پروتئینی مشخص شد که در پلی‌پپتید موردبررسی، 11 مارپیچ آلفا در ناحیه گذرنده از غشا وجود دارد و اسیدآمینه‌هایی با خصوصیت آب‌گریزی در ناحیه گذرنده از غشا واقع شده است و در ادامه انتهای کربوکسیلی با تعداد کمتری مارپیچ آلفا و میزان آب­دوست بودن بالا به‌عنوان ناحیۀ سیتوپلاسمی پروتئین موردنظر مطرح می‌شود. این نتایج نقش دفع سدیم توسط ناقل‌های غشای پلاسمایی را برای وجود واکنش مقاومت به شوری در گیاه کوشیا تأیید نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Isolation and Sequencing of Gene Related to Na+/H+ Anti-porter of Vacuolar Membrane Isolated from Halophytes Plant (Kochia scoparia L.)

نویسندگان [English]

  • Fatemeh Gharibi 1
  • Leila Fahmideh 2
  • Ziba Fooladvand 3
1 MSc Student, Department of Horticultural Science and Green Space, Faculty of Agriculture, University of Zabol, Zabol, Iran
2 Associate Professor, Department of Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol, Iran
3 Instructor, Agriculture and Biotechnology Research Institute, University of Zabol. Iran
چکیده [English]

In this study Kochia scoparia, a halophyte and dicotyledonous was used as a source to gene isolation. First, using primers designed in conserved regions of this gene in plants of the same family, an approximate length of 1605 nucleotides and a sequence of 535 amino acids from the encoding sequence of this gene were identified and sequenced. Using BLAST analysis, the similarity rate of this sequence with 87%- 90% -87% homology at nucleotide level, and 98%- 99% homology at amino acid level with NHX genes of Chenopodiaceae family was determined. Analyses on protein characterization and its relationship with other proteins were conducted through bioinformatics studies. Based on the presence of second protein structures, it has been found that in the studied polypeptide, there are 11 alpha spirals in the region passing through the membrane, and the amino acids of the water-defect characteristic are located in the membrane passage region, while the carboxylic terminal with fewer alpha helix and high hydrophilic property can be introduced as the cytoplasmic region of the protein of interest. These results verified the role of sodium efflux for resistance response to salinity in Kochia using plasma membrane transporters.

کلیدواژه‌ها [English]

  • Cytosolic sodium
  • Salinity
  • Kochia scoparia
  • Plasma membrane transporters
Amjad, H., Shazia, N., Tahira, I., Hina, S. and Ahsanul Haq, M. 2008. Effect of NaCl salinity on seedling growth, senescence, catalase and proteases activities in two wheat genptypes differing in salt tolerance. Pakistan Journal Botany, 40(3): 1043-1051.
Birman, S., Meunier, F., Lesbats, B., LeCaer, J., Rossier, J. and Israel, M. 1990. A 15kDa proteolipid found in mediatophore prepa rations from Torpedo electric organ presents high sequence homology with the bovine chromaffi granule protonophore. FEBS Letters, 261: 303-306.
Brini, F. and Masmoudi, Kh. 2012. Ion Transporters and Abiotic Stress Tolerance in Plants, International Scholarly Research Network ISRN Molecular Biology.
Chanroj, S., Guoying, W., Venema, K., Zhang, Warren, M., Charles Delwiche1, F. and Sze1, H. 2012. Conserved and diversified gene families of monovalent cation/H+ antiporters from algae to flowering plants. Frontiers in Plant Sciences, 3(25): 1-18.
Chen, X., Kanokporn, T., Zeng, Q., Wilkins T. A. and Wood, A. J. 2002. Characterization of the V-type H((+))-ATPase in the resurrection plant Tortula ruralis: accumulation and polysomal recruitment of the proteolipid c subunit in response to salt-stress. Journal Experimental Botany, 53: 367-372.
Chinnusamy, V., Jagendorf , A. and Zhu, J. K. 2005. Understanding and improving salt tolerance in plants. Crop Sciences, 45: 437-448.
Nikkhah, N., Fahmideh, L. and Fooladvand, Z. 2016. Characterization and sequencing of hydrogen/sodium anti-porter gene in plasma membrane of plant Kochia scoparia, Genetic Engineering and Biosafety, 5(2): 113-122.
Fischer, A. J., Messersmith, C. G., Nalewaja, J. D. and Duysen, M. E. 2000. Interference between spring cereals and Kochia scoparia related to environment and photosynthetic pathway. Agronomy Journal, 92: 137-181.
Gruwel, M., Rauw, V., Loewen, M. and Abrams, S. R. 2001. Effects of sodium chloride on plant cells: a 31P and 23Na NMR system to study salt tolerance. Plant Science, 160: 785-794.
Jami Al Ahmadi, M. and Kafi, M. 2008. Kochia (Kochia scoparia): to be or not to be? In: Crop and Forage Production Using Saline Waters, P 119-162. M. Kafi and M. Ajmal Khan (eds.) NAM S&T Centre, Daya Publisher, New Delhi.
Kai, X., Hui Zhang, Z., Blumwald, E. and Xia, T. 2010. A novel plant vacuolar Na /H antiporter Gene Evolved by DNA shuffling confers improved salt tolerance in yeast. The Journal of Biological Chemistry, 285)30): 22999-23006.
Kafi, M., Asadi, H. and Ganjeali, A. 2010. Possible utilization of high salinity waters and application of low amounts of water for production of the halophyte Kochia scoparia as alternative fodder in saline agroecosystems. Agriculture Water Manage, 7: 139-147. (In Persian)
Kernan, J., Souslski, K., Green, D., Knipfel, J. and Coxworth, E. 1986. Kochia and other forage as energy crops. Saskatchewan Research Council, R-811-1-E-86.
Liu, J. and Zhu, J. K. 1997. Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis. Plant Physiology, 114: 591-596.
Maya, S., Landau, M., Padan, E. and. Ben-Ta, N. 2011. Two conflicting NHE1 model structures: compatibility with experimental data and implications for the transport mechanism. Journal Biology Chemistry, 286(21): 286-307.
Maria, G., Chiappetta, A. and Brun, L. 2012. Cellular ion homeostasis: emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development: Journal of Experimental Botany Advance, 17: 1-14.
Munns, R . 2000. Comparative p hysiology of salt and water stress. Plant Cell Environment, 25: 239-250.
Mullinex, W. 1998. Kochia (Kochia spp.) biology outline and bibliography. [Online]. http:// www.agron. iastate.edu/~weeds/ WeedBiolLibrary/ kochiabiblio. html.
Mott, I. W. and Wang, R. R. C. 2007. Comparative transcriptome analysis of salt tolerant wheat germplasm lines using wheat genome arrays. Plant Science, 173: 327-339.
Nabati, J. 2010. Effect of salinity on physiological characteristics and qualitative and quantitative traits of forage Kochia (Kochia scoparia) Ph.D. Thesis. Ferdowsi University of Mashhad. 195p. (In Persian).
Okazaki, Y., Kikuyama, M., Hiramoto, Y. and Iwasaki, N. 1996. Shortterm regulation of cytosolic Ca2+ cytosolic pH and vacuolar pH, under NaCl stress in the charophyte alga Nitellopsis obtusa. Plant Cell Environment, 19: 569-576.
Roberto, A. G., Jisheng, Li., Soledad, U., Lien, M. D., Gethyn, J. A., Seth, L. A. and Gerald, R. F. 2001. Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Pnas, 98(20): 11444-11449.
Sato, Y. and Sakaguchi, M. 2005. Topogenic properties of transmembrane segments of Arabidopsis thaliana NHX1 reveal a common topology model of the Na+/H+ exchanger family. Journal Biochemistry (Tokyo), 138: 425-431.
Sangam, S., Jayasree, D. and Janardhan, K. 2005. Salt tolerance in plant transgenic approaches. Plant Biotechnology, 7: 1-15.
Soleimani, M. R., Kafi, M., Ziae, M. and Shabahang, J. 2008. Effect of limited irrigation with saline water on forage of two local populations of Kochia scoparia L.: Agriculture Science Technology, 22: 307-317. (In Persian).
Shan, H., Chen, S., Jiang, J., Greco, F., Chen, Y., Gu, C. and Zhou, G. 2012. Heterologous expression of the chrysanthemum R2R3-MYB transcription factor CmMYB2 enhances drought and salinity tolerance, increases hypersensitivity to ABA and delays flowering in Arabidopsis thaliana. Molecular biotechnology, 51(2): 160-173.
Wu, S. J., Lei, D. and Zhu, J. K. 1996. SOS1, a genetic locus essential for salt tolerance and potassium acquisition, Plant Cell, 8: 617-627.
Xingyu, J., eduardo, O., Leidi, M. and Jose Pardo, M. 2010. How do vacuolar NHX exchangers functionin plant salt tolerance?, Plant Signaling and Behavior, 5(7): 792-795.
Yamaguchi, T., Aharon, G. S., Sottosanto, J. B. and Blumwald, E. 2005. Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in Ca2+- and pH-dependent manner. Proceedings National Academy Science. USA, 102: 16107-16112.
Zhu, J. K., Liu, J. and Xiong, L. 1998. Genetic analysis of salt tolerance in Arabidopsis. evidence for a critical role of potassium nutrition, Plant Cell, 10: 1181-1191.
Zhu, J. 2003. Regulation of ion homeostasis under salt stress. Current Opinion Plant Biology, 6: 441-445.